Effect of Grazing Management and Land Cover Types on Mineral-Associated Organic Carbon and Particulate Organic Carbon in a Semi-arid Rangelands in Kenya.

Published on August 2021

Research Square

Author

Gitau, A. N., Onwonga, R. N., Mbau, J. S., Chepkemoi, J., & Mureithi, S. M

Abstract

Enhancing soil organic carbon storage in areas under extensive livestock grazing has become a challenge in most arid and semi-arid rangelands in Sub-Saharan Africa. In Kenya for instance, continuous unplanned grazing in community lands has led to overgrazing and degradation of the rangelands. For decades, livestock production has shaped the landscape through various management practices. Grazing can be used to increase soil organic carbon (SOC) content but intensive use of land can lead to its depletion. This study was set out to elucidate the effect of two types of grazing management under varying land cover types on mineral-associated organic carbon (MAOC) and particulate organic carbon (POC) in the soil. The study was carried out in two ranches, Mpala Research Centre (controlled grazing) and Ilmotiok Community Group Ranch (continuous grazing). The experimental design was a completely randomized block design in split-plot arrangement with three replicates. The main plots were the grazing practices; (controlled grazing and continuous grazing); and sub-plots were the land cover types: (bare ground, patches of grasses, and mosaics of trees). These treatments were randomly selected and replicated three times. Three topographical positions (mid-slope, foot slope and bottom land) were used as a blocking factor. Results The interaction had no significant effect on MAOC fraction in any soil depth interval. Controlled grazed zones significantly recorded higher organic carbon content (POC= 0.887% CC SD=0.49) compared to zones under continuous grazing (POC = 0.718% CC SD=0.3). Mosaic of trees (POC =1.15% CC, SD = 0.22) recorded the highest concentration of carbon followed by patches of grass (POC = 0.87% CC, SD= 0.37) and bare ground (POC = 0.38% CC SD = 0.12) had the least. Conclusion This study shows that grazing practices as well as land cover types have a significant effect on POC but not on MAOC. Mosaic of trees under controlled grazing has higher POC whereas bareground under continuous grazing had the least POC. Destocking should be done under continuous grazed zones to reduce further loss of POC and MAOC and allow vegetation recovery.

Category
Publication