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Abstract

Background

Enhancing soil organic carbon storage in areas under extensive livestock grazing has become a
challenge in most arid and semi-arid rangelands in Sub-Saharan Africa. In Kenya for instance, continuous
unplanned grazing in community lands has led to overgrazing and degradation of the rangelands. For
decades, livestock production has shaped the landscape through various management practices. Grazing
can be used to increase soil organic carbon (SOC) content but intensive use of land can lead to its
depletion. This study was set out to elucidate the effect of two types of grazing management under
varying land cover types on mineral-associated organic carbon (MAOC) and particulate organic carbon
(POC) in the soil. The study was carried out in two ranches, Mpala Research Centre (controlled grazing)
and limotiok Community Group Ranch (continuous grazing). The experimental design was a completely
randomized block design in split-plot arrangement with three replicates. The main plots were the grazing
practices; (controlled grazing and continuous grazing); and sub-plots were the land cover types: (bare
ground, patches of grasses, and mosaics of trees). These treatments were randomly selected and
replicated three times. Three topographical positions (mid-slope, foot slope and bottom land) were used
as a blocking factor.

Results

The interaction had no significant effect on MAOC fraction in any soil depth interval. Controlled grazed
zones significantly recorded higher organic carbon content (POC= 0.887% CC SD=0.49) compared to
zones under continuous grazing (POC = 0.718% CC SD=0.3). Mosaic of trees (POC =1.15% CC, SD = 0.22)
recorded the highest concentration of carbon followed by patches of grass (POC = 0.87% CC, SD= 0.37)
and bare ground (POC = 0.38% CC SD = 0.12) had the least.

Conclusion

This study shows that grazing practices as well as land cover types have a significant effect on POC but
not on MAOC. Mosaic of trees under controlled grazing has higher POC whereas bareground under
continuous grazing had the least POC. Destocking should be done under continuous grazed zones to
reduce further loss of POC and MAOC and allow vegetation recovery.

1. Introduction

Semi-arid rangelands in Sub-Saharan Africa have been managed for the past centuries by grazing
leading to an increase in tree density (1). The types of grazing practiced in semi-arid rangelands include
open land grazing, bunched grazing, enclosed grazing, holistic grazing, and rotational grazing (2-5). The
two distinct grazing management practices in the semi-arid rangelands of Kenyan are continuous and
controlled grazing practices. Continuous grazing is characterised as grazing throughout the year with no
rest period for vegetation to recover. Whereas Controlled grazing is practised in private ranches where
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there is land allocation for forage, prioritization is given to both livestock and wildlife with taking into
account drought scenarios with a rest period (1). The grazing intensity in both practices is heavy grazing
intensity for the former and light to moderate grazing intensity in the latter.

Grazing intensity has a significant effect on soil carbon fractions on the surface which is correlated to
species composition and functioning (6, 7). Soil labile and stable carbon fractions forms part of the SOC
reserve with the former being very sensitive to management and can act as a huge source of atmospheric
carbon dioxide CO, if mismanaged through anthropogenic activities like overgrazing (8, 9). The active
labile carbon pool is indirectly influenced by grazing through the species richness and functioning (6, 7,
10). Studies on Continuous grazing, for instance in Ethiopia, showed that it has a negative effect on sail
properties like total nitrogen, phosphorous and CEC unlike in controlled though it is unclear for the carbon
pool as depth increases in semi-arid rangeland where there is co-existence of both grass and trees (11,
12). As it has been suggested as a good soil indicator of the effect of grazing management practices, it is
essential to understand the sources and components of labile carbon fraction. Sources of labile carbon
include vegetation and animal droppings. Urine and faecal matter from herbivorous animals have a high
content of labile carbon and highly decomposable which act as hot spots and hot moments of sources of
greenhouse gases (13-15).

Most studies, on soil organic carbon in semi-arid rangelands of Kenya, report on soil organic carbon for
the top 0.3m depth (5, 16, 17). There is insufficient information on various forms of carbon fractions and
its trend down the soil profile. Depth tells us the trend of carbon and how much has been stored with time
(18). It also reflects on the history of how various aspects like weather, land management and
environmental factors influence SOC over time (19). Several studies show that SOC reduces as depth
increases and it is more stable in the sub-soil compared to the topsoil. It is essential to study MAOC and
POC with depth since it is a source of ecosystem services which is dependent on its availability and the
nature it exists in the soil. There is insufficient information on carbon fractions to contribute to policy
formulation on grazing management. Simple google search on studies focusing on grazing and its effect
on carbon fraction in semi-arid rangelands of Kenya results is less than 50 studies. Against this
backdrop, the current study was carried out to elucidate the quantity and trend of TOC, MAOC and POC
fraction concentration up to 120cm in different topographic positions and land cover changes associated
with grazing practices. This will help to demystify how different grazing management practices and land
cover types influence soil carbon with depth in Laikipia County. This will contribute to coming up with
better grazing management practices which will cub further loss of soil organic carbon.

2. Materials And Methods
2.1 Site description

Laikipia County lies between latitudes 0° 25’ 47.1" N and 0° 17’ 53.7" and longitudes 36° 57' 32.9" E and
36° 47 39.9” E. It has been classified as semi-arid and arid rangelands. It is found in agro ecological zone
V and experiences two rainy seasons and transition periods from the wet season to the dry season (20).
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The short rains begin in October and end in November and the main rainy season occurs in the month of
April to May which is erratic. Laikipia County experiences an average rainfall of 600+50 mm per annum
and a high-temperature range between 25-30°C and low from 12-17°C (2). The elevation of Laikipia
County varies between 1,500 m above sea level at Ewaso Nyiro basin in the North to a maximum of 2,611
m above sea level. The dominant soil type is Vertisols followed by Oxisols (3). A summary of the soil
characteristics is presented in table 1.

The soils are characterized by imperfectly drained grey to black clay — vertisols and planosols, expanding
into the lowland that comprises of metamorphic rocks of gneisses and migmatites with well drained
soils; mostly dark reddish brown consisting of ferric and chromic luvisols (Ngigi 2006). The dominant soil
type is vertisols followed by red sandy soils (3). Other soil properties of the study area have been
summarized in table 1.

Table 1: Soil properties and grazing characteristics in llmotiok and Mpala Ranch
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Grazing management Iimotiok Mpala
Land Ownership Community Private
Total Livestock biomass (TLU) 897 2074

Total livestock and wildlife  (TLU) 1334.4 4572.7
Land area (Ha) 3651 19000
Stocking density (TLU/Km?) 37 24
Stocking intensity Heavy Light to moderate
Soil property

pH (H,0 1:2) 7.06 6.63

EC (dS/m) 0.13 0.07

Sand % 62.25 55.49

Silt % 26.99 32.25

Clay % 10.76 12.33
Texture class Sandy clay loam  Sandy loam
Bulk density (g/cm3) 1.48 1.51

Total N (g/kg) 1.11 1.51

CN ratio 5.19 5.05

Total OC (%) 0.85 1.01

Source: Kibet et al., (2016)

The main economic activities in Laikipia County includes but not limited to, livestock production, tourism,
private and public conservancies, ranching, small- and large-scale farming, horticultural farming, sand
harvesting and quarrying. This has made the entire region to be dependent on pastoralism and charcoal
production. Two adjacent ranches Mpala Research Centre and lImotiok Community group ranch in
Laikipia County, Kenya were selected for the study in 2016. Controlled grazing is practised in Mpala ranch
and has been characterized to practice low to moderate grazing intensity is with a stocking density of
wildlife and cattle with the exclusion of elephants to be 24TLU/Km?. llimotiok community group ranch
has been classified to have a stocking density of 37TLU/Km? (Table 1) and categorized as heavy grazing
intensity (1).
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2.3 Experimental design and treatment

The experimental design was a completely randomized block design with a split plot arrangement. The
main treatments were the grazing management practices, and land cover types were the sub-plots.
Topographical positions were used as a blocking factor. Land cover types were selected randomly based
on the most dominant cover that is bare ground, patches of grass and mosaic of trees. The topographical
positions were classified into mid-slope, foot slope and bottom land (Figure 2) as described by (21).

Topographical positions classification

Topographical positions were first classified as described by (21). A permanent point of reference was
defined within the gradient point (A-F) and the coordinates and altitude of this point were recorded using
a GPS gadget. Topographical positions within the study area were point sampled as shown in Figure 2.

Topographical positions within each grazing management practices were point sampled using a
clinometer and two rods marked at equal height. At the starting point (A), reference point, the first rod was
held vertically and the second rod was held parallel 30 m from the first rod as shown in figure 1. Variation
in topographical points was determined using Equation 1 below.

A Topographical point = distance between sampling point x clinometer reading (Equation 1)

A cloth tape was used to demarcate the length of each transect line. 10 of the points were marked either
as bottom-land, mid-slope, or foot slope if 33 percent of the length of transect (200 m) was considered to
be bottom-land, mid-slope, or foot slope. The ratios of each topo-class within each transect and the total
lengths of all contour lines were calculated out of these values. At each topographical location,
depending on the elevation of neighbouring topographical positions, it was graded as mid-slope (A-B),
foot slope (B-C), or bottomland (C-D). In each topographic positions, land cover types, bare ground,
patches of grasses and mosaics of trees were randomly selected and used to plot, a 200m transect and
replicated 3 times. In each land cover type, soil samples were collected up to 30cm soil depth at intervals
of 10cm. The soils were later tested for MAOC and POC.

2.4 Soil Sampling and analysis

Soil samples were collected from a flat surface which had been cleared of roots and grass using a
calibrated soil auger at depth intervals of 10cm from the surface (Ocm) up to 30cm soil depth. A total of
162 (1kg) soil samples were collected i.e

2 grazing management practices * 3 topographical positions * 3 land cover types * 3 soil depths * 3
replicates = 162 soil samples

The samples were tested for POC, and MAOC classified into various C fractions (22). 50g of fresh soil
was weighed and dispersed with 10% calgon solution for 6 hours. Sieves with a mesh size of 2mm, 250
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pm and 50 pm were arranged in that order and the dispersed soil sample was placed on the 2mm sieve
and the process of wet sieving was carried out. After 20 minutes had elapsed, the fractions that were in
each sieve were collected and oven dried at 65°C for 24 hours. The weight of the dried samples was
recorded and used to determine the percentage of carbon fractions in terms of 2mm - 250 pm POC, and
>53-38 ym MAOC carbon. C concentration in each fraction i.e. POC and MAOC was further classified
using the Walkley-Black method described by (23). C content was isolated in each sieve i.e. 2mm, 250 um
and 50 pm was further analysed for C concentration using the Walkley-Black method described by (23).
Carbon content percentage was calculated using equation 2.

M.e dichromate—m.e FeS04
Weight of soil in grams

%C = { } *0.3 (Equation 2)

2.4.5 Statistical analysis

R software version 3.5.3 (24) was used to carry out a multiple ANOVA tests for POC, and MAOC data.
Agricolae package was used to do post hoc analysis with Tukey HSD test for POC, and MAOC to
separate the means at 5% significance level.

3. Results

The POC fraction had a significant (p<0.001) response to grazing practices, topographical positions and
across different land cover types at a soil depth of 0-10cm and 11-20cm but was insignificant between
21-30cm (Table 2).

Table 2: Means of carbon content (CC) % under different grazing practices at different topographical
positions and various land cover types at 0_30cm soil depth
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Soil Grazing practice = Topographical Land cover types POC

depth positions
Bare Patches of Mosaic of
ground grass trees
0_10cm Continuous Bottom land 041! 0.9gde 1.059
grazing
Foot slope 0.41 0.84f 0.9¢f
Mid-slope 0.18 0.749 0.94¢f
Controlled Bottom land 0.55" 1.39b 1.49b
grazing
Foot slope 0.44' 1.074 1.35
Mid-slope 0.31) 0.2 1.18¢
11_20cm  Continuous Bottom land 033 0.76¢f 0.81d¢
grazing
Foot slope 0.31k 0.679 0.69f9
Mid-slope 0.16 0.57" 0.74f9
Controlled Bottom land 0.45 1.09b 1.242
grazing
Foot slope 0.36] 0.83¢ 1.05°
Mid-slope 0.24% 0.17' 0.9
21_30cm  Continuous Bottom land 0.19hi 0.52d¢ 0.55¢de
grazing
Foot slope 0.18hi 0.44¢f 0.46¢f
Mid-slope 0.1 0.36 0.5def
Controlled Bottom land 0.289h 0.672bc 0.82
grazing
Foot slope 0.21hi 0.57¢de 0.75ab
Mid-slope 0.12! 0.12! 0.63b°d

Means with similar letters are insignificant

Agricolae HSD test specifically under continuous grazing, POC content at mid-slope (POC =0.74% CC,
SD=0.017) in patches of grass indicated significant difference. Under controlled grazed zones, the post
hoc test showed POC means at bottom land in bare ground (POC =0.55% CC, SD=0.041) and mosaic

of trees in mid-slope (POC =1.18% CC, SD=0.061) had a significant difference. Grazing practices and land
cover types, in different topographical positions and respective soil depth, had a significant (p<0.001)

Page 8/17



effect on MAOC fraction. However, the HSD test indicated there was no significant difference between the
MAOC means (Table 3).

Table 3: Means of Mineral Associated Organic Carbon (MAOC) Content under different grazing practices
at different topographical positions and various land cover types at 0_30cm soil depth

Soil Grazing practice = Topographical Land cover types MAOC
depth positions
Bare Patches of Mosaic of
ground grass trees
0_10cm Continuous Bottom land 0.502b 0.29¢fg 0.32def
grazing
Foot slope 0.452bc 0.239h 0.34def
Mid-slope 0.51 ab 0.27efgh O.2h
Controlled Bottom land 0.4¢d 0.3€fg 0.249h
grazing
Foot slope 0.44b° 0.325dh 0.24fdh
Mid-slope 0.522 0.4523bc 0.28¢fg
11_20cm  Continuous Bottom land 0.52b 0.29¢fg 0.32def
grazing
Foot slope 0_456bc 0_23gh O_34de
Mid-slope 0.512b 0.27¢fah 0.2h
Controlled Bottom land 0.4¢d 0.3¢fg 0.249h
grazing
Foot slope 0.44bc 0.25fgh 0.24fagh
Mid-slope 0.522 0.458abc 0.28¢fg
21_30cm  Continuous Bottom land 0.372b 0.363bc 0.392
grazing
Foot slope 0'3abc 0.28bc 0.38ab
Mid-slope 0.353bc 0.29abc 0.27¢
Controlled Bottom land 0.322bc 0.363bc 0.363bc
grazing
Foot slope 0.33abc 0.33abc 0.373b
Mid'SlOPG 0.37ab 0.3abc 0.37abc

Means with similar letters are insignificant.
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4. Discussions
4.1 Particulate Organic Carbon

Grazing practices had a significant effect on POC. This is attributable to the varying stocking density in
the two grazing management practices. Under continuous grazing practice, the stock density varied and
has been classified to have a high grazing intensity (1). High grazing intensity has been associated to
decrease POC in the active soil depth layer. According to Stavi (25) and Pringle (26) grazing practices had
no significant effect on POC. In other studies, grazing has been associated to decrease POC through
trampling which loosens the soil and also reduces the plant cover which is a major source of POC in form
of litter (27). The POC content was observed to be 38% which is within the range observed in other
studies in semi-arid rangelands such as Chan (28), Gill (29), Kaye (30), and Oduor (4). According to Cao
(18), Riggs (31) and Eze (32) POC was detectable because it is sensitive to human-induced practices with
grazing management being one of them. On the other hand, a study carried out in Switzerland was able
to detect less than 20% of POC content and the rest of the CC was linked to MAOC (33). This was due to
the nature of the grassland which consisted of clay loamy soil.

The high CC under mosaics of tree cover was attributable to variation of tree species which have different
amounts of carbon input in form of leaf litter, shoots and twigs which are rich in cutin, suberin and lignin.
Land cover types had a significant effect because of the variation in species composition. Mosaic of
trees recorded the highest followed by patches of grass. Bare ground recorded the least CC. Patches of
grass and mosaics of trees are the main source of POC through the leaf litter. According to Kurgat (16)
variation in vegetation covers types in semi-arid areas protects the soil surface from direct sunlight.
Canopies of trees, such as Acacia species which is common in semi-arid rangelands, have been linked to
having high soil moisture (16). This, in turn, enhances soil decomposition in the root zone.

Moreover, vegetation species have different C content especially trees like Boscia spp and Balanities spp
have high quality and quantity of leaf litter lignin with high mineralization and the C: N ratio input unlike
Acacia species (34-35). Rabbi (36) had similar findings and explained besides patches of land cover
being sources of nutrients; they have a microclimate which slows down the decomposition of SOC in the
soil thus influencing the physiochemical nature of carbon in the soil. On the contrary, Gili (37) associated
high POC under tree canopies to the existence of herbaceous cover which was characterized to be
unpalatable and hard. Also, under mosaics of trees and patches of grass, they have been characterized to
have saturated hydraulic conductivity which enhances SOC content (34). According to Hibbard (38) and
Zhou (39) they associated high clay content to accrue POC under herbaceous and woody cover.

Besides, the drastic loss of POC as the depth increased was due to the high sand percentage at 0_10 soil
depth which was observed to range between 65-70%. The sand was higher at 0_10cm compared to
21_30cm soil depth in the bare ground land cover type. Sandy soils have been associated to have weak
van der Waal forces which enable microbes to easily access POC (40). Also, sandy soils make POC prone
to wind and water erosion.
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4.2 Mineral-associated organic carbon

Grazing system, topographical position and land cover type do not influence soil MAOC. This is attributed
to the similarity in clay content across all the grazing systems and topographical positions. According to
Berryman (41), controlled environments such as lab experiments will detect significant effects. Since this
was a field experiment with ongoing natural perturbations, both unknown and known,
observing/obtaining significant difference between the interactions of grazing management, land cover
types as well as topographical positions on MAOC is a challenge. MAOC is strongly associated with fine
silt and clay particles (42-43). In this study, the silt and clay particles are uniformly distributed across all
land cover types suggesting that the grazing systems and topographical positions had similar capacities
to accumulate MAOC. These results corroborate with studies conducted in the drylands of South-west
Kenya and Northern China (44,27). Furthermore, MAOC was unaffected with depth and similar
observations were made by Ward (45) under grassland cover type.

Continuous grazing recorded higher MAOC compared to controlled grazing. This is because continuous
grazing had higher bare ground cover which is as a result of intensive grazing and high stocking density
of livestock. Intensive grazing leads to less vegetation cover. This in turn leads to oxidation of leaf litter
to POC and MAOC. Due to high temperatures and soil texture, POC is lost through decomposition or
erosion. This explains why under bare ground MAOC was higher compared to patches of grass and
mosaic of trees at the bottomland under continuous grazed zones. A study in Ethiopia had dissimilar
observations whereby uncontrolled grazing record low SOC in micro aggregates (43).

5. Conclusions And Recommendations

Controlled grazing had higher POC and MAOC content compared to continuous grazing. Carbon content
of POC and MAOC was highest in mosaic of trees followed by patches of grasses. Bareground recorded
the least POC and MAOC. Controlled grazing management should be adopted under continuous grazed
areas to curb further loss of particulate organic carbon. Regardless of the grazing management practice
and topographical position, mosaic of trees having recorded high particulate organic carbon content,
more trees should be planted to increase soil organic carbon. This will help to reduce bare ground cover
and restore soils deprived of soil organic carbon. Controlled grazing should be used to reduce overgrazing
of vegetation which is the main source of particulate organic carbon in the form of litter. SOC should be
studied for the first 0-20cm soil depth under various land cover types under different grazing
management in each topographical position as shown this study despite IPCC recommendation of
sampling more than 30cm soil for carbon studies.

Abbreviations

SOC: soil organic carbon; MAOC: mineral-associated organic carbon; POC: particulate organic carbon; CC
carbon content; SD: standard deviation; TOC: total organic carbon; TLU: total livestock unit; ANOVA:
analysis of variance; HSD: honestly significant difference
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Figure 1

Map showing the study site in Mpala and limotiok.
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Figure 2

Topographical classification (Source: Eric et al., 2002)
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