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Abstract
Kenyan drylands have over the years undergone extensive land use and land cover (LULC) changes due to population 
increase, urbanization, agricultural expansion, industrialization and infrastructural developments. There is however lim-
ited information on their historical and future spatio-temporal patterns. This study assessed the spatio-temporal LULC 
change patterns in Kibwezi West for the period 1990–2021 and predicted the LULC map of 2051. Six LULC classes (Forested 
land, shrubland, grassland, cropland, water body and other lands) covering 1,040.9  Km2 were examined. Landsat image-
ries (1990, 2000, 2011 and 2021) were classified using Random Forest algorithm in R software, while LULC change was 
analyzed using ERDAS Imagine. The 2051 LULC map was predicted using Artificial Neural Network and Cellular Automata 
algorithms. OpenLand software was used for visualization of LULC patterns using Sankey diagrams. Overall classification 
accuracy of 78.04% was obtained with 0.61 kappa coefficient. A net loss in forested land (−112.8  km2), shrubland (−54.48 
 km2) and water body (−0.688  km2) had occurred, with a net gain in cropland (146.03  km2), grassland (20.24  km2) and other 
lands (1.66  km2) between 1990–2021. Further, a net loss in shrubland (−110.48  km2), forested land (−89.1  km2), water 
body (−0.38  km2) and other lands (−0.32  km2) was predicted in 2051 while a net gain was predicted in cropland (176.90 
 km2) and grassland (23.39  km2). The study pointed out historical and future encroachment into natural ecosystems like 
forested lands and shrublands. The findings of this study contribute to the body of knowledge on LULC dynamics in 
drylands. These results will inform evidence-based decision-making processes for sustainable land use planning, natural 
resource management and environmental conservation efforts in Kibwezi West and other similar landscapes.
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1 Introduction

The Earth’s land surface is a dynamic combination of different land use and land cover (LULC) types, shaped by natural 
processes as well as human interventions [1]. However, the ever increasing global population, rapid pace of urbanization, 
agricultural expansion and industrialization has triggered and driven changes in the composition and configuration of 
the land surface across the globe [2]. These change drivers could have localized feedback mechanisms on LULC change, 
and in turn could lead to national, regional or global influences [3]. At the global level, the phenomenon of globaliza-
tion has significantly influenced LULC patterns [4]. The integration of local economies into the global market has led to 
increased demand for agricultural products, triggering LULC changes in various regions [5]. These changes span across 
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different geographical boundaries, therefore impacting ecosystems, biodiversity, and the livelihoods of communities 
worldwide [6].

Within the African context, land tenure systems have been pivotal in influencing LULC changes. Traditional land 
management practices and the impacts of colonial era policies have shaped the ownership and utilization of land in 
many African regions [7, 8]. Historically, drylands of Kenya like Kibwezi West were predominantly subsistence farming 
and pastoralism [9]. The practices were largely sustainable and in harmony with the local ecology [10]. However, post-
colonial land reforms and population pressures have significantly altered this balance [8]. Rapid population growth and 
urbanization trends in many African countries, including Kenya, have led to increased demand for land for housing, 
infrastructure, and agriculture [11, 12].

Analysis of LULC change is crucial for understanding the dynamic interactions between human activities and the 
environment. Understanding the dynamics of LULC change is imperative for various reasons. Firstly, these changes sig-
nificantly impact the Earth’s ecosystems, therefore influencing biodiversity, soil health, and water resources. Secondly, 
LULC change is complexly linked to climate change, through emission of greenhouse gasses (GHG) and thus influencing 
regional and global climate patterns [13, 14]. Thirdly, the socio-economic consequences of LULC change are profound, 
affecting food security, livelihoods, and the resilience of communities in the face of environmental uncertainties [15].

Like other dryland regions, Kibwezi West has experienced significant LULC changes over the past decades [16]. These 
changes have been driven by a combination of natural factors and human activities, reflecting broader trends observed 
across the African continent [17, 18]. Kibwezi West is characterized by a semi-arid climate and has traditionally supported 
a mix of small-scale agriculture and pastoralism. However, recent years have seen shifts towards more intensive agricul-
tural practices, urbanization, and infrastructural development [16]. Deforestation and land degradation are also significant 
concerns in the area. For instance, the conversion of forested areas to agricultural land has led to loss of biodiversity, 
alteration of microclimates, and reduced ecosystem services [19–21]. Soil erosion and depletion of soil nutrients are also 
major issues resulting from unsustainable land use or land management practices in Kibwezi [22].

Past studies have highlighted the impact of LULC change on water resources, soil degradation and biodiversity loss 
in Kibwezi west [23]. These changes are closely linked to the livelihoods of local communities, affecting agriculture, 
pastoralism and forestry [10, 24]. A review article by Li, et al. [25] deduced that recent predictive models point towards 
continued pressure on natural resources in drylands like those in Kibwezi West, due to changes in LULC, raising concerns 
about long-term sustainability of these areas. These studies call for integrated land management approaches that balance 
development needs with environmental conservation [25]. Therefore, a comprehensive understanding of the spatio-
temporal changes in LULC in these areas will provide crucial information to inform future land management needs that 
balance social, environmental and environmental factors.

The socio-economic factors influencing LULC changes include population growth, urbanization, and the pursuit for 
economic development. With the population in Kibwezi and its surrounding areas growing, there has been an increased 
demand for land for housing, agriculture, and other economic activities [26]. This has led to extensive LULC change 
through the conversion of natural landscapes into agricultural and urban areas. Understanding these changes is crucial 
for sustainable land management and conservation strategies in the region [27, 28]. The objectives of this study were to 
assess the historical spatio-temporal patterns of LULC change (1990 to 2021) and predict future LULC map of the year 
2051 for Kibwezi West, in Eastern Kenya. This study contributes to the existing body of knowledge on the past, current 
and future spatio-temporal trends of LULC change in drylands of Kenya. Additionally, the findings of this study are envis-
aged to inform policy decisions, community interventions and further academic research on aspects of sustainable land 
use management practices within Kibwezi West and other similar landscapes.

2  Materials and methods

2.1  Study area

This study was conducted in the lower part of Kibwezi West constituency as shown in \* MERGEFORMAT Fig. 1, which 
covers an area of 1,040.9  Km2. Kibwezi West is one of the six constituencies in Makueni County, located on the Eastern 
part of Kenya. Its elevation ranges from 647 to 1993 m above sea level, and is dominated by woody vegetation (shrubs) 
of different species [16].

According to the Kenyan agroecological zones classification, the study area is semi-arid, falling under the agro-
ecological zone V [29]. It lies between latitudes  205′30″ S to  2033′0″ S and longitudes  37040′0″ E to  3805′0″ E. The 
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area receives bimodal rainfall pattern, with unreliable long rains occurring between March and May, and reli-
able short rains occurring between October and December [30]. The area receives a mean annual rainfall of 600 
mm, mean annual minimum temperatures of 14.3 0C and mean annual maximum temperatures of 35.1 0C [31]. 
The dominant soil types, according to the soil classification system of the World Reference Base (WRB IUSS) [32] 
are Ferralsols and Luvisols.

The inhabitants traditionally earned their livelihood by rearing domestic animals (cattle, sheep and goats), agri-
cultural crop production (green grams, sorghum, millets oranges, cotton, coffee, beans, pigeon peas, sisal, maize, 
sweet potatoes, mangoes, cassava, tomatoes, and kales). The crop production is mostly done through intercropping 
and crop rotations [16]. The area has over the years undergone profound LULC changes, therefore leading to land 
degradation, food insecurity and loss of livelihood [23, 33].

Fig. 1  Map of study area [21]
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2.2  Data types and acquisition

Datasets required in analyzing the spatio-temporal patterns of LULC changes were landsat imageries (of a thirty years’ 
period), a digital elevation model (DEM) of 30 m resolution, ground control points (for ground truthing), a map of 
major roads network and a map of rivers network.The DEM, map of major roads network and map of rivers network 
were used in future LULC map prediction. A period of thirty years was preferred since the process of change in LULC 
is slow (depending on the drivers), and a considerable long period of time is recommended for such changes to be 
detected. Similarly, a projection to the year 2051 was preferred because of the aforementioned reason.

Landsat imageries for the years 1990, 2000, 2011 and 2021 were acquired from the United States Geological Survey 
(USGS) archive, by generating them using Google Earth Engine (GEE) (https:// devel opers. google. com/ earth- engine/ 
datas ets/ catal og/ lands at). GEE is a geo-spatial processing platform used for scientific analysis and visualization of 
geo-spatial datasets. It hosts current and historical satellite images openly available to the public. A script was set up 
in GEE for selecting the Landsat image then cloud masking and filtering to the date of interest was done. The process 
involved setting the parameters for cloud masking the images, setting the time period for the image to be selected 
from the archives and looping this code for all the years to be downloaded. The cloud cover percentage was limited to 
10%. Dry season images (January—March) were selected to avoid any seasonal spectral overlap, then the processed 
Landsat scene of path 167 and row 062 (P167R062) Fig. 2a), was downloaded for the respective years for further 
analysis. A satellite image covering the study area was downloaded from Google Earth Pro and presented in Fig. 2b.

A detailed description of the downloaded Landsat images is presented in Table 1. The images were for a 30-year 
period, in 10-year timesteps. Images for the year 2010 were however not used since they had data gaps, which were 

Fig. 2  a Raster image (Landsat) scene P167R062 covering the study area and (b) satellite image captured in the year 2021 for the study area

Table 1  Description of 
downloaded Landsat images

Year Path/Row Date of acquisition Satellite Sensor Spectral 
bands

Resolu-
tion 
(Metres)

1990 167/062 02-02-1990 Landsat 5 Thematic Mapper 7 30
2000 167/062 10-02-2000 Landsat 7 Enhanced Thematic Mapper 8 30
2011 167/062 30-02-2011 Landsat 5 Thematic Mapper 7 30
2021 167/062 26-02-2021 Landsat 8 Operational Land Imager (OLI) 

and Thermal Infrared Sensor
11 30

https://developers.google.com/earth-engine/datasets/catalog/landsat
https://developers.google.com/earth-engine/datasets/catalog/landsat
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caused by an error due to a failed Scan Line Corrector (SLC) for Landsat 7 ETM [34]. Therefore, the image for the year 
2011 was used instead of 2010.

2.3  Preparation of land use and land cover maps

Historical LULC maps for the years 1990, 2000, 2011 and 2021 were developed using the downloaded satellite images 
based on a supervised classification approach [35] in R software [36]. A ground truthing exercise was carried out to verify 
signatures identified from classified land cover maps, with what exactly exists on the ground. Accuracy assessment and 
post-classification was thereafter carried out as explained in Fig. 3 and subsequent sections.

2.3.1  Image preprocessing

Image preprocessing was carried out on the downloaded satellite images to improve the quality of the images and make 
them suitable for LULC change analysis. The following preprocessing steps were carried out.

2.3.1.1 Geometric correction This step was done to ensure that the images accurately represented the real world and 
that features in the image were correctly located and measured i.e., ensure spatial accuracy. The satellite images were 
then transformed and aligned to the common projection of World Geodetic System (WGS) 1984.

2.3.1.2 Cloud and shadow masking This procedure involved removing the effect of cloud and shadow, if any, from the 
satellite images. Ideally, areas with cloud cover were masked and set to a null value (0). This step was crucial since cloud 
cover is a major limitation for the use of optical imagery during LULC classification.

2.3.2  Land cover classification

Land cover classification i.e., the process of assigning a land cover class (or class probability) to each image pixel from 
an image [35], was done using supervised classification through the maximum likelihood method. Supervised clas-
sification was preferred since it preserves basic characteristics of LULC due to its statistical technique of classification 
[37]. The classification categories used for this study (Table 2), were as per what existed in the area, and generally fit the 

Fig. 3  Methodological flow diagram of the study
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classification system used by the Intergovernmental Panel on Climate Change (IPCC) broad categories (i.e., forest land, 
grassland, wetland, settlements and other Lands [38].

Random forest (RF) algorithm, which is a supervised classification method was used [40]. The first step was to select 
training sample sites from the image. The RF was chosen due to its robustness, ability to handle high-dimensional data, 
and high classification accuracy in remote sensing applications [41]. Training sites were groups of pixels that were identi-
fied as having a particular land cover class. They were manually selected and defined as polygons or pixels which were 
digitized on the image and labeled using a land cover code in ArcGIS, then saved as a shapefile to be used in R software. 
An already developed R script was used to run the classification. The R script was configured to find; the shapefile for 
training sites, input image, location of the outputs and margin files. The output product, which was in a tiff format, was 
color coded, assigned visible colors and thereafter, statistics of each LULC cover category were generated using ERDAS 
IMAGINE® software as described by Nelson and Khorram [42].

2.3.3  Post classification assessment

Post classification assessment involved validation and accuracy assessment of LULC maps generated. Validation of the first 
draft of the latest LULC map (2021) was done using ground truth data and high-resolution satellite image for the same 
year from google earth as an auxiliary data set. Based on the total area of study, a total of 214 points were targeted for 
validation. A sampling scheme was therefore designed to sample out points for validation purposes based on accessibil-
ity (points were generated within 500 m along the roads for easier way of reaching the points) and total area coverage. 
Stratified random sampling was adopted considering the area proportion of each LULC category against the total area 
of the study area as shown in Table 3.

Classification accuracy of the generated LULC maps was done by comparing the classification results with ground 
truth data using the confusion matrix tool. Post-classification refinement was done using the error matrix, which shows 
the number of pixels that are correctly or incorrectly classified in every land cover class. Following the results of the error 
matrix, classification was adjusted to improve accuracy. Accuracy assessment was determined using the error matrix, 
Kappa coefficient, producer accuracy and consumer accuracy as described by Rwanga and Ndambuki [43].

Table 2  Definition of the land use and land cover types

LULC type Description

Forested land Included all land with woody vegetation consistent with thresholds used to define forested land as defined by FAO [39]. They 
included gazetted forests (as well as parks and national reserves), forests in private and communal lands

Shrubland Could also be termed as wooded grassland. It mostly consisted of areas covered in a mix of shrubs, grasses, bare land and 
trees, with thresholds below (and not anticipated to rise above) those used in the definition of forested land

Grassland Was composed of treeless grasslands, which were mostly used for pastoralism in the study area and part of the game reserve
Cropland Land areas purposely managed for agricultural activities, consisting of annual herbaceous crops where crops grow in one or 

more seasons in a year and at times, such land were bare due to tillage
Water body Water bodies in the study area and mostly included rivers
Other lands Developed land, including human settlements, transportation infrastructure, bare soil, rocks and all other un-managed land 

areas that did not fall into any of the above-mentioned categories

Table 3  Sampling points for 
validation of LULC categories

LULC category Number of 
points to be 
validated

Forested land 7
Shrubland 92
Grassland 2
Cropland 104
Settlement/other lands 7
Water body 2
Total 214
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2.4  Population projection

Projection of population for the study area was necessary since the information would help in interpretation of the pre-
dicted LULC map. Population data was analyzed for the years 1999, 2009, and 2019 based on the sub-location administra-
tive units and as obtained from the Kenya Bureau of Statistics (KNBS) in line with national census. Using this population 
data, an interpolation was done for the year 2051 using linear regression at 95% confidence interval, in the FORECAST 
function of excel as further described in Wilson [44].

2.5  Prediction of future land use and land cover map

2.5.1  Selection of explanatory variables

Explanatory variables were defined as those variables that would have the capability of contributing to the changes in 
future LULC patterns. The explanatory variables chosen for this study were elevation, slope, distance from roads, distance 
from rivers and population projection. Elevation and slope were derived from the DEM in ArcGIS using the spatial analyst 
tool. Distance from roads and distance from rivers were calculated using the Euclidean method in ArcGIS from major 
roads and rivers network vector layers respectively. The significance of the spatial variables in predicting future LULC 
change was tested using the Cramer’s coefficient (Cramer’s V) in Modules for Land Use Change Evaluation (MOLUSCE) 
plug-in running in QGIS v2.16.3. Cramer’s V shows the association between two variables, and in this case, between the 
spatial variables and LULC [45].

2.5.2  Transition potential modeling

Prediction of future LULC was done using the MOLUSCE plug-in running in QGIS v2.16.3 as described in Hakim, et al. [46]. 
The plug-in incorporates well known algorithms that can be used in the analyses of LULC change, forestry and urban 
projects. MOLUSCE was used to estimate the spatio-temporal changes and transitions in LULC between 1990 – 2000, 2000 
– 2011 and 2011 – 2021. The artificial neural network (ANN) and Monte Carlo cellular automata (CA) algorithms within 
MOLUSCE were used to evaluate LULC transition potentials and to simulate/predict future LULC map for 2051 for the 
study area. The CA-ANN algorithm simulates LULC change using a raster-based grid system with transition probabilities 
to simulate change over time as described by Al-Hameedi, et al. [47]. CA-ANN has been widely used and is documented 
to be effective as compared to linear regression [48]. For the prediction, a minimum of 1,000 iterations, a neighbour-
hood value of one pixel, a learning rate of 0.1, 10 hidden layers and momentum value of 0.05 were set in the ANN model.

2.5.3  Validation of the model

In conjunction with the LULC maps for 1990 and 2011, transition potential matrices and the explanatory spatial variables 
(mentioned in Sect. 2.5.1) were used to predict the LULC map for 2021. In order to validate the model and predict out-
come’s accuracy, the technique of kappa validation (standard kappa, kappa histogram and kappa location) was used to 
compare the predicted 2021 map vis-a-vis the actual 2021 map (which was classified). Three model validation iterations 
were run in CA-ANN. After successful validation of the model, LULC the initial LULC map (1990) and the final LULC map 
(2021), together with the explanatory spatial variables, were used in predicting LULC map for 2051.

2.6  Land use and land cover change analysis

Image differencing was used to determine LULC change extent (Eq. 1), whereby results of gains, losses, net change or 
persistence in LULC change categories was presented in the form of maps, diagrams, graphs and tables. Sankey diagrams 
of LULC dynamics, transition matrices as well as gross and net changes in LULC types over the years were drawn using 
R software’s Open-land and NetworkD3 package as described by [49]. The percent change and annual rate of change in 
LULC were calculated following Leta, et al. [50], using equations Eq. 2 and Eq. 3 respectively.

(1)Change (Km2) = Af − Ai
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where  Af is the area of later LULC map  (Km2),  Ai is the area of initial LULC map  (Km2) and T is the time interval (number 
of years) between  Af and  Ai (years).

3  Results

3.1  Classification accuracy

An overall classification accuracy of 78.04% and a Kappa Coefficient of 0.61 was obtained, whereby 167 points out of 
the 214 sampled for validation were classified accurately (Table 4). Such classification accuracy is considered satisfactory 
for heterogeneous management practices using medium resolution satellite imageries [51]. A categorization of widely 
referenced Kappa statistic values is presented in Rwanga and Ndambuki [43], where values of Kappa coefficient ranging 
0.61 to 0.80 are rated as substantial and thus the generated LULC maps were fit for further analysis.

3.2  Spatio‑temporal land use and land cover classification

Image classification results for the years 1990, 2000, 2011 and 2021 are presented in Fig. 4. Area coverage of the differ-
ent LULC types under study is also presented in Fig. 5. Shrubland dominated the study area from the year 1990 to 2021, 
covering between 41.6% (433  km2) to 52.9% (550.94  km2) of the total area (Fig. 5). Its coverage however reduced in the 
year 2000 by transitioning to the other LULC types. Forested land was the second dominant land cover class in 1990, 
covering 266.10  km2 which corresponds to 25.57% of the total land area. Its coverage increased in the year 2000, but 
later decreased through the years 2011 and 2021. By the year 2021, the second dominant LULC type was cropland which 
covered 33.5% (348.6  Km2) (Fig. 5). Forested land, grassland, water body and other lands covered 14.7% (153.2  Km2), 3.8% 
(39.6  Km2), 0.1% (1.1  Km2) and 0.2% (1.9  Km2) respectively.

3.3  Historical land use and land cover change statistics

Historical land use and land cover change statistics are presented as percent changes and annual rates of change. 
Between the years 1990 –2000, a decrease in area coverage was found to have occurred in cropland, water body and 
shrubland at −13%, −9.7% and −8.8% respectively (Table 5). The rate of decrease was high in shrubland (−4.8  Km2/year), 
followed by cropland (−2.6  Km2/year) then water body (−0.02  Km2/year). On the contrary, grassland, forested land and 
other lands were found to have increased by 169.1%, 15.3% and 810.0% respectively. The rate of increase was however 
high in forested land (4.1  Km2/year) as compared to grassland (3.3  Km2/year) and other lands (0.16  Km2/year) (Table 5).

(2)Percent change (%) =
Af − Ai

Ai

∗ 100

(3)Rate of change (Km2∕year) =
Af − Ai

T

Table 4  Error (confusion) 
matrix of LULC classification

C cropland, FL Forested land, G grassland, WB Water body, O Other lands, SL shrubland

LULC Class C FL G WB O SL Total Producer 
Accuracy

User Accuracy

C 89 0 0 0 1 25 115 86% 77%
FL 0 5 0 0 0 1 6 71% 83%
G 1 0 2 0 0 1 4 100% 50%
WB 0 0 0 2 0 0 2 100% 100%
O 0 0 0 0 4 0 4 57% 100%
SL 14 2 0 0 2 65 83 71% 78.3%
Validated Totals 104 7 2 2 7 92 214
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Fig. 4  Classified land use and land cover maps for the study area in the years (a) 1990, (b) 2000, (c) 2011 and (d) 2021

Fig. 5  Area coverage of dif-
ferent LULC types in the study 
area between the years 1990, 
2000, 2011 and 2021

Table 5  Percent change and 
annual rate of change in land 
use and land cover between 
1990 and 2021

FL Forested land, SL shrubland, G grassland, C cropland, WB Water body, O Other lands

Percent change (%) in LULC Rate of change (Km2/year) in LULC

LULC 1990–2000 2000–2011 2011–2021 1990–2000 2000–2011 2011–2021

FL 15.3 −27.0 −31.6 4.1 −7.5 −7.1
SL −8.8 −13.9 14.7 −4.8 −6.3 6.3
G 169.1 −26.9 4.1 3.3 −1.3 0.2
C −13.0 94.7 1.6 −2.6 15.2 0.6
WB −9.7 −33.6 6.1 −0.02 −0.05 0.01
O 810.0 7.1 −4.6 0.16 0.01 −0.01
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In 2000–2011, a decrease in area coverage occurred in forested land, shrubland, grassland and water bodies at −27%, 
−13.9%, −26.9% and −33.6% respectively (Table 5). The rate of decrease was high in forested land (−7.5  Km2/year) and low 
in water body (−0.05  Km2/year). On the contrary, cropland and other lands were found to have increased by 94.7%, 7.1% 
respectively. The rate of increase was high in cropland (15.2  Km2/year) and low in other lands (0.01  Km2/year) (Table 5).

Between 2011 and 2021, there was a decrease in area coverage in forested land and other lands at −31.6% and −4.6% 
respectively (Table 5). The rate of decrease was high in forested land (−7.1  Km2/year) and low in other lands (−0.01  Km2/
year). On the contrary, shrubland, grassland, water body and cropland were found to have increased by 14.7%, 4.1%, 
6.1% and 1.6% respectively. The rate of increase was however high in shrubland (6.3  Km2/year) and low in water body 
(0.01  Km2/year) (Table 5).

3.4  Prediction of land use and land cover map for 2051

3.4.1  Spatial variables for prediction of land use and land cover change

The explanatory spatial variables (elevation, slope, distance from roads, distance from rivers) used for this study are 
presented in Fig. 6. Their significance was evaluated in the MOLUSCE plugin in QGIS using Cramer’s value. Cramer’s val-
ues range from zero (0) to one (1) with one representing a strong association between LULC and the spatial variables. A 
value of 0 represents no association between the spatial variables and LULC patterns. The Cramer’s value for the spatial 

Fig. 6  Spatial layers used for predicting future LULC map
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variables in this study is indicated in Table 6. Cramer’s V of ≥ 0.15 are usually considered substantial and therefore the 
variables should be considered in modeling [45, 46]. 

3.4.2  Population projection

Population projection in the study area was found to have an increasing trend over the years. The population was 
projected to increase by 47% from 143,786 people in 2019 to 211,531 people in 2051 (Table 7). The upper and lower 
confidence bounds are also indicated in Table 7.

3.5  Model validation

In MOLUSCE, model validation was done by comparing the predicted map of the year 2021 and the actual map of the 
year 2021. After several model iterations, and thereafter comparing the predicted LULC map of 2021 and the actual LULC 
map of the same year, satisfactory statistics were acquired. The kappa statistics for predicted maps of 2021 and 2051 are 
presented in Table 8. During the model learning process, the minimum validation overall error was 0.01512 and 0.02117 
for 2021 and 2051 respectively.

3.6  Predicted land use and land cover map for the year 2051

The predicted LULC map of the year 2051, in comparison to the LULC map of 2021 is presented in Fig. 7. Area coverage 
of the different predicted LULC types is also presented in Fig. 8. From the prediction, it was anticipated that cropland 
would dominate the study area by covering 50.5% (525.5  km2) of the total area by the year 2051 (Fig. 8). Shrubland 
would be the second dominant LULC type, covering 37.1% (386.0  km2) of the total land area. Forested land, grassland, 
other lands and water body were predicted to cover 6.2% (64.1  Km2), 6.1% (63.0  Km2), 0.2% (1.5  Km2) and 0.1% (1.7  Km2) 
respectively (Fig. 8).

Table 6  Cramer’s coefficient 
values of the spatial variables

Spatial variable Cramer’s 
coefficient

Digital elevation model (DEM) 0.39
Slope 0.31
Distance from major roads 0.19
Distance from rivers 0.16

Table 7  Population projection 
in the study area

Year Population Forecast Lower confidence 
bound

Upper confi-
dence bound

1999 94,627 – – –
2009 94,003 – – –
2019 143,786 143,786 143,786 143,786
2029 – 161,853 132,774 190,932
2039 – 184,434 154,784 214,083
2049 – 207,015 176,125 237,904
2051 – 211,531 180,213 242,849

Table 8  Kappa values for 
predicted maps of the years 
2021 and 2051

2021 2051

Percent correctness 93.75 88.10
Kappa (overall) 0.90 0.80
Kappa (histogram) 0.92 0.96
Kappa (location) 0.98 0.84
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Fig. 7  Classified LULC map of 2021 (a) and predicted LULC map of 2051 (b)

Fig. 8  Area coverage of different LULC types in Kibwezi West between the years 2021 and 2051



Vol.:(0123456789)

Discover Soil            (2024) 1:21  | https://doi.org/10.1007/s44378-024-00021-4 Research

3.7  Predicted land use and land cover change statistics

Between the years 2021 to 2051, there was an increase in area coverage under cropland and grassland at 59.1% and 50.7% 
respectively. The rate of increase was however higher in cropland (5.9  Km2/year) than in grassland (0.8  Km2/year). On the 
contrary, forested land, shrubland, water body and other lands decreased by 58.9%, 22.3%, 37.1% and 17.7% respectively. 
The rate of decrease was however high in shrubland (3.7  Km2/year) and low in water body (0.01  Km2/year) (Table 9).

3.8  Land use and land cover change dynamics between 1990 to 2051

The Sankey diagram (Fig. 9) visualizes LULC extent and dynamics in the study area between the years 1990, 2000, 
2011, 2021 and 2051. It is accompanied by a cross-tabulation (transition area matrices) between these years (Table 10 

Table 9  Percent change and 
annual rate of change in land 
use and land cover between 
2021 and 2051

FL Forested land, SL shrubland, G grassland, C cropland, WB Water body, O Other lands

Percent change (%) in LULC Rate of change 
(Km2/year) in 
LULC

LULC 2021—2051 2021—2051

FL −58.9 −3.0
SL −22.3 −3.7
G 59.1 0.8
C 50.7 5.9
WB −37.1 −0.01
O −17.7 −0.01

Fig. 9  Sankey diagram for comparison of land cover dynamics in four land cover maps for the years 1990, 2000, 2011, 2021 and 2051. The 
lines (paths) show transition of LULC classes in the study area between the years
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Table 10  Transition area matrix for land use and land cover change between the years 1990–2021
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and Table 11), which indicate the persistence and transitions during the time intervals of 1990–2000, 20–2011, 
2011–2021 and 2021–2051. The height of bars in each column of Fig. 9 represent abundance of the land use classes 
in the study area at a particular year. In the last three decades, major gross transitions were amongst forested land, 
shrubland, cropland and grassland as indicated by the thickness of paths in Fig. 9. Forested land was mostly lost to 
shrubland, with a peak transition of 10.85% occurring in 2011–2021 (Table 10). Shrubland majorly lost its coverage 
area to grassland, cropland and forested land, with a high transition occurring between 2000 and 2011, whereby 
18.03% of shrubland transitioned to cropland (Table 10). In cropland, most of its area coverage was lost to shrubland, 
with a high transition area of 10.83% being experienced between 2011 and 2021. The coverage area for grassland 
was majorly lost to shrubland, with a high transition of 3.04% being experienced during 2000–2011 (Table 10). By 
the year 2051, forested land was predicted to lose 9.24% of its area coverage to shrubland while 18.53% of shrubland 
would be lost to cropland (Table 11). Transitions in the remaining LULC types were below 1% (Table 11).

3.9  Net gains and net losses in land use and land cover

Net gains and net losses in area coverage of different land use and land cover classes between the years 1990 and 2021 
is presented in Fig. 10. Forested land, shrubland and water body were found to experience a net loss of coverage area 
between the years 1990 to 2021 (Fig. 10). Highest net loss of −12.86  km2 was experienced in forested land while the low-
est net loss of -0.68  km2 was experienced in the water body. Shrubland had an intermediate net loss of -54.48  km2 in its 
area. In contrast, cropland, grassland and other lands had a net gain of coverage area between the years 1990 to 2021 
(Fig. 10). Highest net gain of 146.03  km2 was found to have been experienced in cropland, while the lowest net gain of 
1.66  km2 was experienced in other lands. Grasslands had an intermediate net gain of 20.24  km2.

Net gains and net losses in area coverage of different land use and land cover classes between the years 2021 and 2051 
are presented in Fig. 11. From the results, an indication of possible net loss in coverage area for forested land, shrubland, 
water body and other lands was predicted between the years 2021 to 2051 (Fig. 11). Highest net loss of -110.48  km2 was 
predicted to occur in shrublands while lowest net loss of -0.32  km2 was in other lands.

Forested land and water body were found to have intermediate coverage area net losses of -89.10  km2 and -0.38  km2 
respectively. On the contrary, grassland and cropland were predicted to experience net gains in their coverage areas 

FL Forested land, SL shrubland, G grassland, C cropland, WB water body, O other lands, shaded box = percentage of no transition
Table 10  (continued)

Table 11  Transition area matrix for land use and land cover change between the years 2021–2051

FL Forested land, SL shrubland, G grassland, C cropland, WB water body, O Other lands, shaded box = percentage of no transition
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between the years 2021 and 2051. Cropland would have the highest net gain of 176.90  km2 while grasslands would have 
the lowest net gain of 23.39  km2 (Fig. 11).

4  Discussion

4.1  Image classification and accuracy

Satisfactory classification accuracy and Kappa Coefficient from this study demonstrates reliable and credible analysis. 
Rwanga and Ndambuki [43] state that Kappa coefficients of 0.61 to 0.80 have a substantial rate of agreement in assessing 
classification accuracy. Comparatively, due to varying factors like classification algorithms, complexity of landscapes and 
imagery resolution, similar studies in drylands reported varying classification accuracies. Nouri, et al. [52] for instance, 
reported accuracies ranging between 70 and 85% when they classified a semi-arid region of Iran using images of medium 
resolution. Additionally, Oduke, et al. [53] reported overall classification accuracy of 81% for a LULC change analysis in 
Kitui Kenya, which is a comparable environment to Kibwezi West. However, discrepancies were realized while comparing 
this study’s accuracy levels to those that used images of higher resolution. For instance, the work by Chapa, et al. [54], 
reported classification accuracies of over 85% using higher resolution images. This difference could be attributed to the 
varied spatial resolution, as medium-resolution satellite imagery tends to struggle with capturing fine-scale details in 
heterogeneous environments, a limitation that has been highlighted in other studies [55].

4.2  Population projection

A population projection of 47% increase from 2019 to 2051 (Table 7) is a critical factor when it comes to influencing 
LULC transitions. The growth is expected to exert pressure on resources like land, therefore leading to increased conver-
sion of natural ecosystems because of increased demand for agricultural land, settlement areas and infrastructure. Such 

Fig. 10  Comparison of overall changes in LULC types between the years 1990 to 2021
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demographic pressures have been documented as drivers of LULC change, as noted by Güneralp, et al. [56] in their study 
of forecasting urban expansion and their impacts on biodiversity and carbon pools.

4.3  Land use land cover classification and change detection

Despite the water (moisture) stress and poor soils in drylands of Kenya like those in Kibwezi West, these ecosystems play 
a crucial role in environmental sustainability and supporting livelihoods of the people who live there. Unfortunately, as 
presented in the findings of this research, extensive LULC change was reported to have been experienced over the last 
three decades in Kibwezi west. The historical analysis revealed noteworthy shifts in LULC patterns between 1990 and 2021. 
The dominance of shrubland and cropland in the study area highlighted the agricultural and natural landscape charac-
teristics of the region. However, the observed decrease in forestland and water bodies points towards the environmental 
changes and potential ecological impacts of anthropogenic activities. Such trends could possibly lead to a reduction in 
soil organic carbon and increased greenhouse gas emissions to the atmosphere as pointed out by Omwoyo, et al. [21].

The observed increase in coverage area under shrubland was at the expense of forested land, since a larger proportion 
of forested land was observed to have transitioned to shrubland. This can be related to increased forest encroachment 
from nearby communities as well as infrastructure development projects like the standard gauge railway (SGR), whereby 
portions of Kibwezi Forest were cleared to pave way for construction of the railway. Similar findings were reported by 
Sang, et al. [57], whereby their study found out that construction of the SGR led to immense LULC change along its cor-
ridor. Additionally, the loss in forest cover that was observed between 2000 and 2011 could be because of the increase 
in settlements/other lands that was observed between 1990 – 2000. The demand for land for settlement and other infra-
structural developments could have put pressure on the natural ecosystems like forested lands, shrublands and grass-
lands. These findings are in line with those of Mugambi, et al. [23], who reported that high levels of deforestation were 
experienced in Kenya’s forested areas between the years 2000–2010 through search of firewood, other forest products 
and farming. Residents of Kibwezi West traditionally practice subsistence farming and rear animals that require grazing, 
and therefore this could explain the predicted increase in coverage area of grasslands by the year 2051.

Fig. 11  Comparison of overall changes in LULC classes between the years 2021 and 2051
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Other reasons for the decline in area coverage of forested land could be attributed to forest fires either naturally 
occurring or because of prolonged dry spells. A report by the GoK [58] indicated that most forest fires in Eastern 
Kenya occurred between the years 2000 and 2010. Under cropland, the observed increase in its coverage area was 
at the expense of other LULC types, majorly shrublands, and this depicted an expansion in food production. The 
reason behind this could be because of increased demand for subsistence and commercial agricultural produce, 
due to increased population as was observed in the study area. These observations are in agreement with those of 
Ruttoh, et al. [16] who reported that there was a great conversion of the natural vegetation into agricultural lands 
and built up areas.

Consequently, a decline in the natural ecosystems (forested areas, shrublands and grasslands) that was observed 
between 2000 and 2011 could have led to the reduction in water bodies. The natural ecosystems are key catchment 
areas to streams and rivers, hence their destruction led to reduced water discharge. Similar findings were presented 
in Mwaura, et al. [59], whereby over the same period, some of Kibwezi’s permanent rivers had dried up while others 
had turned to be seasonal due to human interference through LULC change. Other studies, like those of Omwoyo, 
et al. [60] found similar trends of reduced stream flow due to catchment degradation. Further, similar concerns about 
the loss of natural vegetation and its impact on ecosystem services have been raised by recent studies in other dry-
lands, such as that by Tesfay, et al. [61], who noted that the degradation of shrublands in Ethiopia led to increased 
vulnerability to climate change.

Further, the observed high percentage of expansion in other lands (a LULC type which included settlement areas) 
between 1990 and 2000 could be attributed to encroachment and in-migration of people to Kibwezi in search of land 
to settle. The government of Kenya introduced the ‘Shamba System’ in the late 1990’s and early 2000’s for people to 
intercrop annual crops with targeted indigenous tree seedlings in forested areas. The system however failed, leading 
to encroachment and degradation of forests [62].

4.4  Land use and land cover change transitions

The transition pathways depicted in the Sankey diagrams visually represent the conversion of LULC types, illustrat-
ing the complex interactions and transformations occurring within the landscape. The net gains and losses analysis 
revealed contrasting trends among different LULC types. This, therefore, reflected the dynamic nature of land use 
practices, which can include deforestation, agricultural expansion, and urban development. All these factors have 
significant implications for ecosystem services, biodiversity, and land degradation in Kibwezi West.

Looking ahead to the projected scenarios for 2051, the anticipated increase in cropland and grassland areas 
suggests continued intensification of agricultural activities and potential land use diversification. However, the 
anticipated net losses in forested land, shrubland, water bodies, and other lands suggest potential challenges in 
biodiversity conservation, ecosystem resilience, and sustainable land management in the future. These results mir-
ror the trends observed in other regions of Africa, where agricultural land expansion was forecasted to be driven by 
population growth and the need for increased food production [63, 64]. The projected population increase in the 
study area by 47% between 2019 and 2051 reinforces this prediction, as previous studies have demonstrated strong 
correlations between population growth and agricultural land expansion in dryland regions [65]. Similar popula-
tion–driven LULC dynamics were reported by Assede, et al. [17], who linked demographic pressures to significant 
land cover changes in Africa. However, the predicted decline in forested land (−58.9%) by 2051 raises concerns about 
the sustainability of land use practices, especially given the essential ecosystem services provided by forests in terms 
of carbon sequestration and biodiversity conservation.

Overall, the findings of this research provide valuable insights for land use planning, conservation strategies, and 
sustainable development initiatives in the Kibwezi West region. This study has demonstrated the importance of monitor-
ing LULC patterns and dynamics. The results can be used to promote sustainable natural resource use and planning, for 
resilient landscapes in the face of changing socio-economic and environmental pressures. The LULC trends depicted by 
this study are comparable to other studies in similar dryland environments across Kenya and beyond. For instance Kirui 
and Mirzabaev [66], Omwoyo, et al. [60] and Musyoka and Onjala [67] reported similar possible drivers of LULC change 
in the drylands of East Africa, including population increase, infrastructural developments and expansion agricultural 
activities. Despite the use of medium satellite images providing critical information for decision making, future rstudies 
should focus on integrating higher-resolution satellite images and advanced modeling techniques to capture finer-scale 
changes and provide more accurate predictions of LULC dynamics in dryland ecosystems of Kenya.
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5  Conclusion

The study conducted a comprehensive analysis of land use and land cover (LULC) dynamics in the Kibwezi West region 
from 1990 to 2051. LULC classification was performed using supervised classification, and the 2051 LULC map was 
predicted using the Random Forest algorithm. Six LULC classes were identified: Forested land, shrubland, grassland, 
cropland, water body and other lands. The overall classification accuracy of 78.04% and Kappa Coefficient of 0.61 were 
satisfactory for further LULC change analyses. Cropland, grassland and other lands experienced a net gain in coverage 
area, while forested land, shrubland and water body showed a net loss between 1990 to 2021. A projected net loss in 
coverage area for forested land, shrubland, water body and other lands was predicted for the period from 2021 to 2051.

These findings highlight significant transformations in LULC classes over the decades, offering insights into pat-
terns of change and potential future trajectories. The results contribute to the body of knowledge on LULC dynamics, 
which will support evidence-based decision-making processes for sustainable land use planning, natural resource 
management and environmental conservation efforts in Kibwezi West and similar landscapes. Moving forward, there 
is a need for comprehensive and sustainable land resource management strategies in Kenya’s drylands. Future policy 
interventions should promote sustainable agricultural practices, sustainable land use management and conservation 
of natural habitats to support the growing population while preserving ecological integrity.
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