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Abstract

Adept use of fertilizers is critical if sustainable development goal two of zero hunger and

agroecosystem resilience are to be achieved for African smallholder agroecosystems.

These heterogeneous systems are characterized by poor soil health mainly attributed to soil

nutrient depletion. However, conventional methods do not take into account spatial patterns

across geographies within agroecosystems, which poses great challenges for targeted

interventions of nutrient management. This study aimed to develop a novel population-

based farm survey approach for diagnosing soil nutrient deficiencies. The approach

embraces principles of land health surveillance of problem definition and rigorous sampling

scheme. The advent of rapid soil testing techniques, like infrared spectroscopy, offers

opportune avenues for high-density soil and plant characterization. A farm survey was con-

ducted on 64 maize fields, to collect data on soil and plant tissue nutrient concentration and

grain yield (GY) for maize crops, using hierarchical and purposive sampling. Correlations

between soil test values with GY and biomass were established. The relationship between

GY, soil NPK, and the tissue nutrient concentrations was evaluated to guide the setting up

of localized critical soil test values. Diagnosis Recommendation Integrated System (DRIS)

indices for total nitrogen (N), total phosphorus (P), and total potassium (K) were used to

rank and map the prevalence of nutrient limitations. A positive correlation existed between

plant tissue nutrient concentration with GY with R2 values of 0.089, 0.033, and 0.001 for

NPK, respectively. Soil test cut-off values were 0.01%, 12 mg kg-1, 4.5 cmolc kg-1 for NPK,

respectively, which varied slightly from established soil critical values for soil nutrient diag-

nostics. N and K were the most limiting nutrients for maize production in 67% of sampled

fields. The study demonstrates that a population-based farm survey of crop fields can be a

useful tool in nutrient diagnostics and setting priorities for site-specific fertilizer recommen-

dations. A larger-scale application of the approach is warranted.
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1.0 Introduction

Smallholder agroecosystems support livelihoods of 1.2 billion people and are the backbone of

the rural economy [1]. These agroecosystems play a significant role in food production, pov-

erty alleviation and mitigation against hunger for rural populations [2]. The smallholder sys-

tems are characterized by soil fertility degradation [3], low quality germplasm [4], which

constraint crop production [5,6]. Poor soil health, associated with nutrient limitation is a

major consequence of low crop productivity and has resulted in declined yields for staple cere-

als such as maize [7,8]. Soil health is the capacity of soil to respond to agricultural intervention

so that it continues to support both agricultural production and provision of other ecosystem

services [9,10]. To mitigate the scourge of poor soil health in the smallholder agroecosystems,

accurate and repeatable methods for determining nutrient deficiencies are a prerequisite for

judicious fertilizer investments [7]. In addition, such investments require good agronomic

practices, which enhance biological processes and maintain physical properties like soil struc-

ture that also influence soil health.

It is becoming apparent to policymakers and soil scientists that conventional methods used

in nutrient diagnostic may not be efficient, due to soil heterogeneity, particularly nutrient vari-

ation. Studies provide evidence of heterogeneity within smallholder agroecosystem, which is

among cardinal causes of nutrient use inefficiencies and poor crop response to fertilizer appli-

cations [11–14]. However, few studies propose ways of dealing with soil heterogeneity in rela-

tion to site-specific nutrient diagnostics, to inform decisions on fertilizer requirements [15].

Conventional approaches lack a rigorous framework, which can help farmers make empirical
evidence-based decisions on nutrient management [7,10]. The conventional nutrient diagnos-

tics can generally be summarized as follows.

i. Visual symptoms observation (histology), which entails inspection of deficiency symptoms

of nutrients that are most limiting to crop growth [16,17]. The deficiency of individual

nutrient produces characteristic effects on various organs of the plants [18]. For example,

stunted growth and yellow-greenish color (chlorosis) on leaves are normally associated with

N limitation [19]. Ability to recognize these particular effects forms the basis of the visual

method, which is readily applied by smallholder farmers [18,20]. Farmers also use indige-

nous knowledge such as soil colour and the presence of a particular weed within their farm

to diagnose whether a nutrient is limiting [20,21]. However, the symptoms observed could

easily be misinterpreted with other plant stress (e.g., pest and diseases). Recent studies asso-

ciate chlorosis with maize leaves necrosis disease [22], while chlorotic stirps have been

attributed to the presence of maize streak virus [23]. Therefore, this requires histology to be

complemented with other methods (e.g. soil or foliar testing–using rapid soil testing kits), to

ascertain the actual cause of observed symptoms [21].

ii. Nutrient omission trials, where a single and/or few trials are established in a specified geo-

graphical location, to evaluate crop responses to fertilizer applications [24–26]. The diag-

nostic results obtained are limited to that specific locality, and when extrapolated to other

regions, it may lead to incorrect diagnostic conclusions [27,28]. The assumption that few

trials would represent soil heterogeneity, at the regional or landscape levels is rarely realis-

tic. This limits the applicability of omission trials, to accurately diagnose spatial pattern of

limiting nutrients, due to variation across trial sites, within the agroecosystem [12,29].

iii. Soil testing, may provide information on the limiting nutrients. Often, low soil test values

signify a positive crop response to fertilizer application [30,31]. Soil test values need to be

calibrated to crop response before they can be interpreted accurately [32], but the lack of

data to calibrate soil tests is a major setback in many developing countries [33,34]. Soil
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testing must be in tandem with plant tissue testing, which is a powerful tool for diagnosing

micronutrient deficiencies that may prevent responses to macronutrients [35,36]. High

costs of wet chemical analysis, restrict the applicability of soil testing for large area assess-

ments of limiting nutrients [17,37].

Given the limitations of the conventional methods, alternative approaches for nutrient

diagnosis for smallholder agroecosystems are necessary for the rationalization of fertilizer

investments decisions. Population-Based Survey (PBS) for evaluation of disease prevalence has

become popular in epidemiology because it is a rapid and reliable way to assess a patient’s

health condition within a given population [38,39]. This approach is particularly useful when

monitoring disease patterns within human populations and designing targeted curative medi-

cal interventions [40,41]. There is potential for developing a nutrient diagnostic approach, a

Population-based Farms Survey (PFS), which can be anchored on the principles of Land

Health Surveillance (LHS) that are borrowed from PBS [7]. The LHS deploys a rigorous

ground sampling scheme and uses proximal techniques (e.g. infrared spectroscopy) for

cheaper and rapid nutrient diagnosis [7]. The approach was recently applied in smallholder

landscapes of Malawi, where Beedy et al., identified areas with high-risk land degradation and

provided options for targeted management interventions [42]. Information on soil and plant

nutrient relationships is collected, and statistical models are employed to provide population-

based estimates of means, Diagnosis Recommendation Integrated System (DRIS) indices, and

confidence intervals on nutrient limitations [7,10]. The developed DRIS indices can be used to

diagnose and rank limiting nutrients [43]. This can be done in tandem with digital property

mapping for the evaluation of spatial patterns and prevalence of limiting nutrients. Conse-

quently, spatial variability patterns of nutritional constraints are identified at a landscape scale.

This provides an evidence-based guide for nutrient management decisions within smallholder

agroecosystems. The proposed approach has never been tested in its applicability in nutrient

management for smallholder agroecosystems, particularly in heterogeneous maize farming

systems. However, uncertainty in PFS may stem from lack of knowledge by smallholder farm-

ers, wrong data interpretation, and variability in laboratory chemical analysis for the reference

data, for developing spectral calibrations for predicting properties of soil and plant samples

[44]. These limitations can be overcome by enhancing accuracy in data collection to obtain

correct interpretation, and employing standard laboratory analytical methods such as infrared

spectroscopy.

The overall objective of the study was to test the PFS approach for the nutrient diagnosis in

the smallholder agroecosystems of western Kenya. The region was deemed as a suitable testing

site because it is typified with heterogeneous parcels of smallholder maize fields. The study spe-

cifically aimed to: (i) evaluate NPK nutrients limitations using farm surveys soil and plant

data, and (ii) use indices and map the spatial distribution of the nutrient deficiencies across the

landscape. NPK are considered as the major nutrients limiting plant growth [45]. A hypothesis

that the spatial pattern occurrence of NPK nutrient limitation is random within smallholder

agroecosystems was tested. Previous studies conducted in western Kenya, have characterized

the region with poor soil health [46].

2.0 Material and methods

2.1 Study area

The domain of interest is smallholder maize farms, situated within administrative sub-counties

of Boro, Butere, Yala, Khwisero, and Ugunja and lies between 0˚260 - 0˚180 northern latitude;

33˚580 - 34˚330 eastern longitude (Fig 1), within the sub-humid Lower Midland zone [43]. The
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landforms vary, ranging from undulating hills and broad valleys, moderate lowlands, and

swamps. Altitudes vary in the gentle landscape, between 1400 and 1500m above sea level.

Bimodal rainfall patterns and a mean annual temperature of 20˚C, characterize this region

[43]. The long rains occur from March to May, while short rain from October to December

[43]. The major soil classes in the study area include Ferrasols (well-drained, moderately to

very deep, clay soils) on the hills, Cambisols (well-drained, moderately deep, loamy clay soils)

also the hills and Gleysols (poorly drained, shallow, sandy loam soils) on the plains [44].

Details on the study area, characteristic, and selection of the sites are provided by Ichami

et al. [47]. The smallholder agroecosystem landscapes are characterized by subsistence farming

systems, where farmers grow food crops such as maize (Zea mays L.), bananas (Musa paradi-
siaca L.), sweet potatoes (Ipomoea batata L.), and groundnuts (Arachis hypogaea L) [48]. The

region is characterized by a high population density (500 persons per square kilometer) imply-

ing higher pressure on existing land for crop productivity within this smallholder

agroecosystem.

2.2 Overview of the population-based farm survey approach

The PFS approach involved conducting a farm survey on several maize fields. The term “popu-
lation-based” signified a population of a smallholder maize fields, within smallholder agroeco-

system. A target population was defined as a representative sample population, drawn from a

population of maize fields (with defined characteristics) that was evaluated. The target popula-

tion forms the basis for making inferences about the nutrient diagnosis for the whole popula-

tion of maize fields. The sequence of steps employed in this novel nutrient diagnostic

approach is summarized in Fig 2, which provides guidelines for diagnostics, ranking, and map-

ping spatial patterns of nutrient limitations.

2.2.1 Farm survey. A farm survey was conducted using a Land Degradation Sampling

Framework (LDSF) scheme [47], to obtain population estimates on soil and plant NPK

Fig 1. Geographical location of study site within sub-county administrative boundaries of Kenya, where the

population-based farm survey was conducted, and also shows location sampled plots within maize field (blue

points).

https://doi.org/10.1371/journal.pone.0262754.g001
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nutrients status on targeted maize fields (Step 1, Fig 2). The farm survey was stratified into

unfertilized maize fields, to capture variation in soil and plant information at different spatial

scales. Details of the farm survey are described by Ichami et al. [47]. The LDSF is a stratified

hierarchical design, which captured variability at different scale levels: block, tiles, sub-tiles,

fields, and plots (Fig 3). A 100 km2 square block was overlaid in the study area and sub-divided

into 16 tiles (6.25 km2), and each tile was further sub-divided into 10 sub-tiles (0.25 km2). A

total of 8 tiles and 32 sub-tiles were randomly selected, within which geographical coordinates

were selected to represent maize fields. Three pairs of geographical coordinates were drawn

for sampling in each sub-tile, for consecutive long and short rain seasons of 2013. Prior to con-

ducting the survey, approval and consent were sought from the local government authorities

and the smallholder farmers, owners of the farm where the samples were collected.

Fig 2. Sequence of step used for implementing a population-based farm survey for nutrient diagnostics of maize

fields within smallholder agroecosystem.

https://doi.org/10.1371/journal.pone.0262754.g002

Fig 3. The Land Degradation Sampling Framework (LDSF) used for the sampling strategy (a) Square block measuring

100 km2, (b) Tile 6.25 km2 (c) Sub-tile with randomly selected maize fields (d) maize field (0.25 km2) with e) plots (A,

B, C, D) in a Y frame layout, (12.2 m radius distributed uniformly at 360˚). The plots measure 2.5 m2.

https://doi.org/10.1371/journal.pone.0262754.g003
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A maize field for sampling was identified using a global positioning system (GPS) device,

by navigating through the smallholder landscapes. Unfertilized monocrop maize field, at the

ear-leaf growth stage, that was well managed (e.g., free of weeds, pest and diseases), was

selected for sampling. Only 2 nearby maize fields were sampled. The third field was not sam-

pled, except for cases where the 2 prior selected fields, did not fulfill the aforementioned crite-

rion. To capture a wide variation in nutrient concentration, a purposive sampling strategy was

included, where a maize field was considered to be “poor” or “good”, are purposely included

for selection [49]. But only when they fell within the proximity of selected coordinates. Visual

observation of the physiological maize attributes such as the stem height and basal diameter

were used to discern the poor or good fields following Lafitte [50]. The defined good fields

were those with healthy maize crops, while poor fields were associated with malnourished

maize crops (Fig 4). This ensured the target population was sufficiently characterized.

Upon selection of a field, a Y frame was laid and a central plot was located first, by measur-

ing 20 m from the main boundary, towards the center of the maize field. The main boundary

was defined as the boundary located from the direction of smallholder farmers’ homestead.

Three plots were thereafter located, 12.2 m from the central plot, and distributed uniformly

around it. Geographical coordinates, soil and plant nutrient concentration, and plant biovo-

lume were determined for each plot (2.5 m2).

Within the selected plot, soil sampling was achieved using a zig-zag pattern, where six soil

samples were taken at 0 to 25 cm depth, using an Edelman soil auger (600 cm3), to obtain a

composite representative sample. Plant sampling was conducted by extracting three maize ear

leaves samples, which were also selected using a zig-zag pattern, for nutrient analysis at 60 to

75 days after plant emergence (silking stage). The assumption was, at this growth stage, the

maize tissue (ear-leaf) had an optimum concentration of nutrients.

Plant biovolume (BV) and grain yield (GY) were determined and represented crop

responses in the study area. Plant biovolume was estimated using the basal diameter (BD) and

Fig 4. Photographs of a) good maize field, that is well managed and b) a poorly manage maize field, within the smallholder

agroecosystems (Picture courtesy of Stephen M. Ichami).

https://doi.org/10.1371/journal.pone.0262754.g004
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height (H) of the maize plant, following Chomba et al. [49]: Eq 1.

BV cm3ð Þ ¼ H cmð Þ �
BDðcmÞ

2

� �2

p ð1Þ

The BD was measured in duplicate, two centimeters above the soil surface. Mean biovolume

was estimated from measurements of all maize plants in the plot. Grain yield was measured

from dry maize that was hand-harvested and the kernels removed and weighed (kg) at plant

maturity (between 50–60 days after the silking stage).

2.2.2 Spectral measurements of soil and plant samples. All soil and plant samples were

characterized for NPK nutrients by taking spectral measurements within the mid-infrared

(MIR) region (4000–600 cm-1). Preliminary preparation of soil samples involved air-drying

and grounding, to pass through a 2 mm sieve to minimize variation due to moisture. While

plant samples were washed under running tap water and rinsed with deionized water to

remove contaminants, then oven-dried at 60˚ C, before grounding (< 1 mm) for spectral

measurements.

Fourier-transform MIR spectrometer (FT-IR; Tensor 27, Bruker Optics, Karlsruhe, Ger-

many) with a high throughput screening extension arm using a liquid Nitrogen cooled

HgCdTe detector, was used to determine MIR diffuse reflectance. Prior to spectral measure-

ments, soil samples were finely ground using a sample mill. Approximately, 0.05 grams of the

fine sample were loaded and leveled into wells in aluminum micro-plates (A752-96, Bruker

Optics, Karlsruhe) using a micro spatula, in four replicates (per sample). An empty well was

used for reference readings, taken before each sample reading using an average of 32 scans.

Absorbance was recorded at a spectral resolution of 4 cm-1 zero-filled to 2 cm-1 and a single

spectrum was obtained for each sample. First derivative spectra with a smoothing gap of 3

points were used in all the spectral analyses [51].

Conventional laboratory methods were used to obtain reference data with 25% of the obser-

vations, which was used to develop calibration models. Total soil N was analyzed by dry com-

bustion using a C/N analyzer [52]. Extractable P and K were determined using the Mehlich-3

extract [53], and an inductive coupled plasma optical emission spectrometer [54].

Plant samples were analyzed for total NPK tissue nutrient concentration following methods

outlined by Okalebo et al. [55]. Total N was determined by sulphuric digestion followed by

micro-Kjedhal distillation, while P and K were calorimetrically determined using vanadium

molybdate after digestion with sulphuric acid [55,56], and P measured via flame photometry

method [56].

2.2.3 Spectral models and evaluation statistics. Soil and plant NPK nutrient concentra-

tions were predicted from spectral measurements data for all the samples using calibration

models [37,57]. Wet-chemical reference values were calibrated to the smoothed first derivative

spectra by conducting partial least square regression analysis using the “soil. spec” R package

[51]. Soil and plant attributes were natural log- transformed for P and K to near normality dis-

tributions. The first-order derivative of the absorbance spectra over the MIR range was calcu-

lated using the Savitsky-Golay algorithm using the soil.spec R package, and was optimal for

NPK [51]. The reliability and robustness of the calibration models were evaluated by the hold-

out cross-validation procedure, using the coefficient of determination (R2) and Root Mean

Square Error of cross-validation (RMSECV), which were calculated using Eq 2.

R2 ¼
SSR
TSS

ð2AÞ
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RMSECV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PNp

i¼1

ðbycvi � yiÞ

Np

s

ð2BÞ

where, SSR is the sum square of regression, and TSS is the total sum of squares, bycvi, and yi are

the predicted and measured reference values respectively and Np is the number of samples

tested. High R2, and low RMSEV values were interpreted to have a good model fit.

The survey enabled the establishment of a database (Step 1, Fig 2), containing information

on geographical coordinates, spectral measurement of soil and plant nutrient concentrations,

GY and BV. Descriptive statistics for soil and plant nutrient concentrations were computed.

The mean, maximum, minimum, standard deviation, coefficient of variation (CV), and confi-

dence intervals (CI) values were determined. Density plots were used to test the normality of

distribution of soil and plant variables. Skewed variables were transformed to achieve a near-

normal distribution, before correlation analysis and geostatistical modelling.

2.2.4 Development of nutrient diagnostic criterion. The diagnostic criterion was based

on soil test values for NPK nutrients (Step 2, Fig 2). Mean soil test values were compared to

established critical nutrient values (Table 1) for NPK maize tissue concentration from the liter-

ature [58,59]. This formed the baseline soil test values for nutrient diagnostics. Maize plots

were identified as deficient when soil test values were below the critical level of the nutrient

value.

Maize ear-leaf nutrient NPK concentrations were subjected to regression analysis as a func-

tion of GY and BV. The relationships between maize tissue nutrient concentration and GY

were evaluated following the Cate -Nelson method [63] and used to establish soil test cut-off

values. The Cate -Nelson analysis enabled the calibration of soil test values to the study site.

The analysis was also used to determine level where the addition of nutrients was likely to

increase maize yield [63,64]. This was used to identify which maize fields were likely to

respond to fertilizer application. These relationships were examined as a basis for establishing

localized soil test values. The later values, with the corresponding maize yield, were used to

define “deficient” and “sufficient” populations. Localized soil test values were identified by

establishing a frequency distribution plot of two subpopulations, which were plotted as a func-

tion of NPK soil tests values. Critical soil test values were obtained based on the overlaps of the

frequency distribution curves between the two subpopulations, at the upper and the lower 90%

CI of two populations, respectively. This led to the next step of developing DRIS indices, for

identifying important nutrients, and ranked their severity in terms of their deficiency.

2.2.5 Ranking level of nutrient limitation severity. The DRIS indices were computed as

described by Beaufils [65]. The target population was divided into “deficient” and “sufficient”
subpopulations, based on the maize yield values established through Cate and Nelson Analysis

in Step 2 (Fig 2). The indices were used to determine relative degree of imbalance among

nutrients in the study area [52]. The main objective of this analysis was to rank the level of

nutrient limitations and imbalance (Step 3, Fig 2).

Table 1. Established critical nutrient concentration values for maize crop.

Nutrient Critical nutrient concentration (%) at deficiency level Critical nutrient concentration (%) range sufficiency level Source

Nitrogen 3.00 4.00–6.40 [59,60]

Phosphorus 0.25 0.42–0.69 [61]

Potassium 2.00 3.50–5.00 [59,62]

https://doi.org/10.1371/journal.pone.0262754.t001
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Calculation of DRIS indices utilized norms derived from maize tissues nutrient composi-

tions and corresponding yields, representing variability encountered by fields. Means and vari-

ances of maize tissue nutrient concentration were calculated for two subpopulations for each

nutrient. The N/P or N/K or P/K were computed only for the sufficient subpopulations and

then divided by the number of observations of each expression: Eq 3.

norm for nitrogen=phosphorus ¼
N=P

n
ð3AÞ

norm for nitrogen=potassium ¼
N=K

n
ð3BÞ

norm for phosphorus=potassium ¼
P=K

n
ð3CÞ

where, NPK refers to maize tissue nutrient concentration in percentage (%), and n is the num-

ber of observations in the sufficient subpopulations.

DRIS indices were calculated: using Eqs 4 and 5.

N Index ¼
f ðN=PÞ þ f ðN=KÞ

2

� �

ð4AÞ

P Index ¼
f ðN=PÞ þ f ðP=KÞ

2

� �

ð4BÞ

K Index ¼
f ðP=KÞ þ f ðN=KÞ

2

� �

ð4CÞ

where : f N=Pð Þ ¼
N=P
n=p
� 1

� �
1000

CV
ð5AÞ

when the actual value of N/P> n/p or

f N=Pð Þ ¼ 1 �
N=P
n=p

� �
1000

CV
ð5BÞ

when the actual value of N/P< n/p

n/p is the mean (norm) value for N/P, and CV is the coefficient of variation for high-yield-

ing populations. The other terms of f(N/K) and f(P/K) are derived in a similar way using the

means, n/k for N/K and p/k for P/K, respectively in place of n/p. The interpretation of DRIS

indices was based on the magnitude of their values, which sum to zero. The more negative a

value appeared, the more a nutrient was ranked as more limiting and imbalanced.

2.2.6 Mapping prevalence of limiting nutrients. Spatial analysis was conducted to evalu-

ate spatial variability of DRIS indices across the study area (Step 4, Fig 2). Spatial pattern of

DRIS indices within the study area was analyzed by developing interpolation maps of DRIS

indices using inverse distance weighted [66]. The spatial pattern described levels of nutrient

geographic distribution within the study area. Maps for this study were developed using a

“ggplot2” package [67]. This enabled identification of specific geographies where actual nutri-

ent imbalance and limitation occurred.

Moran’s (I) Index was computed and used to evaluate spatial auto-correlation by identify-

ing the presence of clustered or dispersion patterns in NPK nutrient limitations, based on
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DRIS indices [68]. The magnitude of Moran (I) index depicts levels of spatial clustering, with

positive values taken to indicate clustering, and negative values showed spatial dispersion. To

test the hypothesis that the spatial pattern occurrence of NPK nutrient is random within small-

holder agroecosystems, the Local Moran’s Index was computed using Eq 6

I ¼
yi � y
d

Pn
j¼1;j6¼i½Wijðyj � yÞ� ð6Þ

where y is the mean value of y with the sample number of n; yi is the value of the variable at

location i; yj is the value at other locations (where j6¼i); δ is the variance of z; and Wij is a dis-

tance weighting between zi and zj, which can be defined as the inverse of the distance. Monte

Carlo simulations for MI was conducted, to test the robustness of the prediction of the

observed spatial patterns. The Moran I index were computed using the “spdep” R package

[69].

3.0 Results

3.1. Farm survey database

The developed spatial database contained 256 plot observations from 64 maize fields that

formed the target population for this study. Grain yield and BV represented crop response of

unfertilized maize fields. At the time of grain harvesting, 7% of the sampled plots had been har-

vested by farmers. The final database contained spectral information on soil and maize ear-leaf

tissue NPK nutrient concentrations, GY and BV with 256 records across 11 variables (latitude,

longitude, altitude, soil N, soil P, soil K, tissue N, tissue P, tissue K, GY, biomass), including

missing values of GY.

Spectral calibration models for NPK gave good fits with cross-validated R2 values of 0.88,

0.68, and 0.74, respectively (Table 2). The robustness of the calibration models varied, as

shown by the different fit of R2 and RMSECV values. Soil test N concentration had the lowest

RMSECV of 0.09, compared to Extr. K, which had a higher value of 0.44. However, the poor

prediction was evident for plant tissue phosphorus (see S2 Fig). Nitrogen prediction was

robust compared to Extr. P and K.

Predicted means for soil N varied from 0.06% to 0.36%, while Extr. P and K had a median

of 17.2 mg kg-1 and 4.6 cmolc kg-1, respectively (Table 3). Low nutrients concentration, charac-

terized the soils of study area, as exhibited by means of soil N, Ext. P, and K. Cases of soil NPK

nutrient deficiencies were evaluated based on the critical soil values of 0.2%, 10 mg kg-1, and 3

cmolc kg-1, for NPK, respectively [55,62]. Nutrient deficiency cases were prevalent in 57%,

61% and 43% of observations, for soil N, Extr. P and K, respectively.

Table 2. Mid-infrared calibration model statistics that predicted soil and plant nutrient concentrations of the

study area.

Nutrient

concentration

Coefficient of determination

(R2)

Root Mean Square Error of Cross Validation

(RMSECV)

Soil samples

Total Nitrogen 0.88 0.09

Extractable Potassium 0.74 0.44

Extractable

Phosphorus

0.68 0.40

Maize ear-leaf samples

Nitrogen 0.84 0.08

Phosphorus 0.84 0.16

Potassium 0.80 0.12

https://doi.org/10.1371/journal.pone.0262754.t002
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The maize fields were characterized by variation in soil and plant tissue nutrient concentra-

tion, as well as crop responses. High variation occurred in Extr. P with a CV value of 61% com-

pared to a corresponding value of 25% for P concentration for the maize ear-leaf tissue

(Table 3). Soil N exhibited low variation (CV = 25%). A similar trend was observed for N and

P ear-leaf tissue nutrient concentration, with CV values of 25% for both. Grain yield and BV

displayed high variability with CV values of 55% and 40%, respectively. The high CV statistics

indicate that the farm survey captured variability in crop response and nutritional status of the

study area. Outlier (11) that displayed very high N concentration were expunged in the preced-

ing analysis.

Density plots for soil N, GY, and BV displayed a near normal distribution. Extr. P and K

were negatively skewed, indicating the presence of low values amongst the target population.

Skewed variables were transformed to natural log (ln) values, to attain approximate normal

distribution, as required in the subsequent steps of statistical evaluation of the population-

based farm survey approach.

3.2. Diagnosis of limiting nutrients

Correlation analysis indicates a linear increase of 67% and 30% of GY and BV, respectively,

with increasing maize tissue P concentration (Fig 5). A generally observed trend was an

increase in maize tissue nutrient concentration, which corresponded to 5.37 Mg ha-1, and 240

cm3 increase for GY and BV for a unit increase in tissue P, respectively (Fig 5B, 5C and 5E).

Tissue N had a positive significant relationship (p = 0.018, R = 0.22) with BV, as would be

expected at the silking stage (Fig 5B). The relationship between GY and N contrasted that of

BV and N, which was negative and poorly correlated (p = 0.54, R = -0.085). Similar non-signif-

icant negative relationship was observed between K and BV (p = 0.26, R = -0.11). Even though

there were weak correlations as shown by low R values (< 0.5), tissue N concentration had the

strongest significant relation (p = 0.018, R = 0.22) with BV compared to the relationships

between GY with P and K tissue nutrients (Fig 5). Poor relations can be attributed to low nutri-

ent concentration in the soil of the study area, nutrient imbalance, and deficiency in micronu-

trients that affect nutrient uptake by the plant [36,70,71]. The results indicate the poor capacity

of plant tissue to predict maize grain yield.

Table 3. Soil properties, maize ear leaf total tissue nutrient concentration and crop response variables of unfertilized maize plots across a smallholder agroecosys-

tem in western Kenya.

Nutrient n Minimum Maximum Median Mean Standard deviation Coefficient of variation Confidence Interval mean (95%)

Soil properties

Total N (%) 245 0.06 0.36 0.14 0.15 0.04 25% 0.01

Extr. Potassium (mg kg-1) 256 8.19 107.21 17.22 21.02 12.82 61% 1.58

Extr. Phosphorus (cmolc kg-1) 256 0.12 6.48 4.61 4.24 1.49 35% 0.18

Maize ear-leaf samples

Nitrogen (%) 220 0.12 0.40 0.22 0.23 0.06 25% 0.01

Phosphorus (%) 220 0.57 2.76 1.84 1.80 0.45 25% 0.06

Potassium (%) 220 0.00 3.81 1.86 1.68 0.70 42% 0.11

Crop responses

Grain yield (Mg ha-1) 203 0.08 11.28 3.20 3.54 1.90 54% 0.23

Plant bio-volume (cm3) 203 31.00 392.91 161.00 170.38 73.33 43% 9.10

n = number of observations, Extr. = Extractable.

https://doi.org/10.1371/journal.pone.0262754.t003
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The significant relationship between BV and maize ear-leaf tissue concentration for N was

indicative that they could be inferred and used to measure nutrient limitations. Therefore,

established critical nutrient value for total N formed a basis for dividing the target population

into a “deficient” and “sufficient” subpopulation. The deficient subpopulation constituted 46%,

a representation of poor maize fields in the study area. The two subpopulations formed the

basis for establishing localized soil cut-off values for the study area.

Established soil cut-off values were used to determine the prevalence of soil nutrient limita-

tion for the study area (Table 1). The target population was characterized by soil N deficiency

in 67% of the sampled field, and 54% in phosphorus, while 37% was observed for potassium.

Approximately 15% of the maize fields had N levels in the range of 0.1–0.25%. Therefore, it

was clear that soil N was a major factor limiting maize growth in the study area.

Fig 6 shows results of Cate–Nelson analysis used to determine and calibrate (localize) the

critical soil test value for NPK. The soil critical values were 0.13% for N, 18.3 for Extr. P and

5.3 cmolc kg-1 for Extr. K, below which crop response was likely. These critical soil test values

correspond to the GY yield of 3.3 Mg ha-1, 2.0 Mg ha-1, and 5.9 Mg ha-1 for NPK, respectively.

Based on this analysis, the target population was divided into responsive and non-responsive

categories. Quadrants II and IV represented the responsive plots while I and III represented

the non-responsive. Result indicates 76%, 61% and 79% of the maize plots would be responsive

to NPK applications, respectively. The Cate-Nelson analysis for partition the target population

Fig 5. Relationship between grain yield (Mg ha-1) and plant biomass (cm3) as function of maize tissue total nutrient concentration for;

a, b) nitrogen (%), c, b) phosphorus (%), and e, f) potassium (%).

https://doi.org/10.1371/journal.pone.0262754.g005
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was robust as indicated by the ratio between responsive and non-responsive maize plots with

r2 values of 0.76 for N, 0.61 for P and 0.68 for K.

Fig 7 presents frequency distribution plots for soil tests values for total N, Extr. P and K.

Localized soil cut-off values were 0.097% for soil N, 12.5 mg kg-1 for Extr. P and 4.5 cmolc kg-1

for Extr. K. There was no clear separation of deficient and sufficient subpopulations for total N

and Ext. K (Fig 7B and 7F). In the frequency distribution plot for Extr. P, it performed better

for the separation of the deficient and sufficient populations (Fig 7D). Result also suggests soil

cut-off values can be obtained using farm survey data, since there were no significant differ-

ences in magnitude between developed farm survey soil cut-off values, compared to published

critical soil test values [55].

3.3 Ranking limiting nutrients

The target population consisted of 256 observations, and were divided into deficient and suffi-
cient populations, which comprised of 115 and 141 observations, respectively. These subpopu-

lations formed basis for computing DRIS indices. Calculated variance ratio of N/P, N/K and

P/K were significantly different (p< 0.01). The significance of variance provided evidence on

the validity of the assumption used in separating the two aforementioned subpopulations.

Deficient subpopulation showed high values of standard deviation (0.18) and CV (34%) for N

compared to sufficient subpopulation.

The DRIS indices varied widely, from -35.86 to 36.87 for N for the study area. Mean DRIS

indices were -6.3 for N, -13.5 for P, and -2.1 for K (Fig 8). Extractable P was ranked as the most

limiting nutrient compared to N and Extr. K. The relative ranking of the limiting nutrient, in

ascending order from the most limiting was phosphorus > nitrogen > potassium. The results

imply that fertilization of the maize crop in the study area may prioritize fertilization of phos-

phorus since it is the most limiting nutrient.

Fig 6. Soil test critical values with the Cate-Nelson method analysis for a) Nitrogen, b) Phosphorus and c) potassium.

The intersection of blue lines, the vertical and horizontal line of the x, and y represents critical values for soil test values

beyond which crop response is unlikely. The black dots are characterized as responsive plots while the white dots are

non-responsive plots.

https://doi.org/10.1371/journal.pone.0262754.g006
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3.4 Map prevalence of limiting nutrients

Our study identified spatial patterns for NPK nutrient limitation using maps for DRIS indices

for the study area (Fig 9). The bubble maps were used to visualize nutrient limitation across

specific maize fields occurring in the region. The color gradient intensity represents the level

of nutrient limitation which corresponded to proxy values, from severe (< 0.5 blue hues) to

optimum (> 5 yellow hues). There was a variation in nutrient limitation patterns across the

study area. For example, severe K nutrient limitation were observed in Yala sub-county. How-

ever, N was diagnosed as limiting in 64% of the maize fields, with severe, low and moderate

nutrient limitations within the same sub-county. Gradient in P limitation was evident as indi-

cated by the blue hue in Yala sub-county, with only seven maize fields diagnosed as optimum

for P nutrient status. We observed nutrient limitation everywhere in the smallholder agroeco-

systems, and many maize fields (> 50%) had moderate and severe nutrient limitations (see S4

Fig). The display of NPK geographical patterns of nutrient limitations meant that further eval-

uation of spatial autocorrelation using Moran Index (MI) was necessary to ascertain whether

clustering of nutrients was present in the study area.

Positive Moran Index (MI) values were observed with values > 0.20 (Table 4). A hypothesis

that the spatial occurrence of NPK nutrient limitation is random, within smallholder

Fig 7. Density plots for soil test values a) for nitrogen, c) for phosphorus and e) potassium with corresponding to frequency distribution

plot of “deficient” and “sufficient” sub-population for establishing localized soil cut-off values for b) nitrogen, d) for phosphorus, and f)

potassium. The dashed red lines represent the soil cut off values, while the black one represents the mean soil test values of target

population.

https://doi.org/10.1371/journal.pone.0262754.g007
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agroecosystem was rejected since MI for NK was significantly positive (p< 0.001). Thus, the

MI indicated clustering in NPK nutrient limitation for the study area. Specifically, we find

NPK nutrients displaying a clustering pattern, where multiple deficiencies of NPK occurring

in the same geographical location, within the study area. Monte Carlo simulation for the MI

using 599 interactions displayed significant values for N and K, indicating evidence of the

robustness of the results.

4.0 Discussion

The main purpose of this study was to develop a Population-Based Farm Survey approach for

nutrient diagnostics in smallholder agroecosystems. The novelty of the PFS approach comes

from the combination of technologies that generate synergy between them. The critical nutri-

ent concentration concept was established by Cate and Nelson [63], the DRIS approach [72],

and spatial mapping tools [73,74]. The combination of these technologies generates significant

synergisms and has demonstrated potential for the diagnosis of nutrient limitations in hetero-

geneous smallholder agroecosystems. These tools were incorporated in this current approach,

following the principle of LHS of rigorous sampling and case definition, to estimate nutrient

limitation at specific geographical niches within agroecosystem [7].

Fig 8. Mean DRIS indices for nitrogen, phosphorus and potassium for maize fields across the study area.

https://doi.org/10.1371/journal.pone.0262754.g008
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Farm survey employed MIR spectral analysis to predict nutrient limitations for NPK for the

study area (Table 2). The spectral calibration prediction model was robust but varied between

soil and the maize ear-leaf tissue nutrient concentration for NPK. The fundamental vibrations

of molecules in soil and plant materials were found in the MIR spectral region, with distinct

spectral signatures displayed. This is attributed to the strong absorption of overtones by

hydroxyl ions [37]. The best prediction was observed for soil N, with R2 of 0.88 (Table 2), and

within ranges reported by Yang et al. [75], followed by Extr. P with R2 = 0.74, similar to those

reported by Maleki et al. [76]. This calibration were better compared to those reported by

Janik et al. [77] for Extr. P. The R2 ranged from 0.60 to 0.90, and their (RMSECV) were satis-

factory for diagnosis of nutrient deficiencies [78]. Even though previous studies showed poor

prediction for phosphorus [77,79], it is clear that MIR spectra contain useful information

about NPK nutrient limitations in general. These findings demonstrate the potential of using

MIR spectra for the assessment of nutrient deficiencies and can be embedded in the imple-

mentation of PFS approach for smallholder nutrient management strategies [57,80]. The main

advantage of this technique is the reduction of cost and rapidness, especially when a target

population has many soil and plant samples, to be analysed for large areas [81].

Crop response, soil nutrient concentration, and maize tissue samples displayed a high

degree of variability as evidenced by the CV values (Table 3). The observed variability was

attributed to the difference in the inherent soil fertility, due to the influence of topography

[82], management aspects [83], and soil types [84]. These results provide evidence of high vari-

ability in NPK nutrients across the smallholder landscape. This can be explained by the effects

of climate, soil and historical management in the study area [85,86]. The finding is in

Fig 9. Maps showing the geographical location of maize fields and the spatial pattern of the intensity of nutrient

limitations across the study area based on DRIS indices values for a) nitrogen, b) potassium and c) phosphorus.

https://doi.org/10.1371/journal.pone.0262754.g009

Table 4. Moran index for the for maize fields in a smallholder landscape in Western Kenya.

Nitrogen Phosphorus Potassium

Moran Index 0.40 0. 23 0.42

p value 0.0003 0.31 0.01

https://doi.org/10.1371/journal.pone.0262754.t004
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agreement to those reported by Tittonell et al. [12] in smallholder farms of western Kenya.

Thus, a spatially-explicit approach for diagnosis of limiting nutrients, as an amelioration strat-

egy for nutrient management for the smallholder agroecosystems is necessary. As a result, it

would lead to a site-specific nutrient management strategy for the study area (Fig 2).

Soil and plant relations, although weak, were used to establish soil cut-off values useful in

defining cases where nutrients were limiting (Figs 5–7). Developed soil cut-off values fell within

the established ranges [55,87]. For example, Adeoye and Agboola [87] reported values ranging

from 10 to 16 mg kg-1 for phosphorus, and 0.6 to 0.8 cmolc kg-1 for K in Nigeria. Based on

developed soil cut-off values (Fig 7), diagnoses of NPK limitation were established in 67%, 54%,

and 37% of sampled maize fields studied. There was no significant variation in the field (per-

centage) diagnosed as deficient using the already established (baseline) soil test values derived

from the literature (Table 2). Additionally, our results indicate NPK were limiting maize pro-

duction in the study area, and agree with those reported by Kihara et al. [88] in western Kenya,

from nutrient omission trials. Although similar conclusions are reached with our findings, a

striking difference with the PFS approach was the sampling strategy. We used farm survey data

sampled from 256 plots, and in both studies, NPK were found to be limiting. However, the farm

survey approach used 256 plots, spread across the study area, compared to 32 plots for nutrient

omission trials within the same region [88]. The advantage and robust of PFS approach, is the

calibration to actual farm conditions and development of local soil test value using the Cate and

Nelson analysis to discern whether the maize field has excess or low NPK nutrients concentra-

tion (Fig 7). This approach was useful in predicting of non-responsive maize fields to fertilizer

application, a problem that needs attention in smallholder agroecosystems. Thus, fertilizer

investment strategies can be focused on the deficient maize plots to “flatten the curve”.

The frequency plot of the “deficient” and “sufficient” subpopulation as a function of soil test

values displayed a near-normal distribution for soil N and Ext. P (Fig 6B and 6D). The

observed distribution can be explained by high soil heterogeneity [89], soil disturbances

through ploughing [90], and low concentration of phosphorus, fixation of P, and potassium

values for the study area [5,34]. Even though soil test values provided a criterion for defining

cases of NPK limitations within the study area, they present disadvantages for nutrient diag-

nostic, when used in isolation [91,92]. Hence the need of incorporating maize tissue nutrient

concentration. The relationships between measured ear-leaf tissue nutrient concentration and

crop response were very tenuous (Fig 5), similar to the observations made in previous studies

[32,35]. This can be attributed to the maize growth and its nutrient uptake rate in the field,

which depend on many environmental factors such as moisture, soil nutrients concentration,

and their interactions, that varied (Table 3) across the maize fields [18]. The growing plant

integrates all these soil factors and is the best measure of true nutrient availability of the unfer-

tilized maize fields [93].

The synergy of the current approach was first evident by evaluating nutrient concentration

in both maize tissues and soil samples (Figs 5–7) where established critical nutrient concentra-

tion test values formed the basis for defining cases limiting nutrient. A positive correlation

between maize tissue N concentration and plant biomass was observed (Fig 5B), which could

be explained by high nitrogen uptake at the silking stage as expected [94]. Observations of pos-

itive and significant correlations between N concentration in maize leaves and GY are in line

with those of Bak et al. [95]. Poor correlation between GY and P concentration (Fig 5)

observed in the study could be attributed to low levels of P in the soil [25]. Poor relation

between Extr. K and grain yield could be attributed to the poor prediction of the magnitude of

GY (Fig 5C). The results differ from those reported by Clover et al. [96] who found good rela-

tions between potassium and grain yield, but in fertilized maize fields. The utility of critical

nutrient concentration in maize tissue provides a synergy since these values guided
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establishing deficient and sufficient sub-populations, on whose basis the DRIS indices for diag-

nosis of limiting nutrients were developed. This study, therefore, supports our argument that

soil test values or maize tissue level are better used together rather than in isolation. These are

complementary tools, which can used as a criterion of defining cases where nutrient limitation

occurs within smallholder agroecosystems. The approach also demonstrates the development

of localized soil cut off values.

The DRIS indices showed varying values for NPK nutrient limitation in the study but were

within ranges reported by Nziguheba et al. [43] for maize crops (Fig 8). Potassium was ranked

as the least limiting nutrient compared to phosphorus was the most limiting nutrient. Thus,

fertilizer recommendations of N-based fertilizers with high portions of P and low K would be

appropriate. The DRIS indices were used because they were not affected by differences in

growth stages of maize crops [72]. The indices demonstrate the incorporation of plant nutrient

concentration in nutrient diagnostics and bring the second synergy into this current approach.

The DRIS technique was found to be advantageous since it took into account the nutrient sta-

tus of the whole maize plant [97]. The results of DRIS were associated with uncertainty since

the indices cannot be used to make fertilizer recommendations, although they provided sub-

stantial additional information on nutrient limitation ranking [58,98]. Thus, the indices should

be accompanied by soil samples taken from the same area, hence the need for synergies for

these nutrient diagnostic methods.

Diagnosis of limiting nutrients and ranking was established in the aforementioned section.

However, the results do not explicitly explain, the spatial distribution of nutrient limitation of

the study area. Thus, a geostatistical technique was employed to evaluate geographical distribu-

tion, which brings in the last synergy of the population-based farm survey approach.

A hypothesis that the spatial occurrence of NPK nutrient limitation is a random pattern

within smallholder agroecosystem was tested and rejected since the MI for NPK nutrients

were positive (Table 4). Test of significance for MI values for N displayed a significant clus-

tered distribution (p< 0.001, MI = 0.40) (Table 4). The spatial pattern of P and K did not

appear significantly different from a random distribution for this region (Table 4). The result

for N clustering conforms to those by Panday et al. [99] who found significant clustering for N

in smallholder farms of Nepal. Clustering may be taken as an indication of the occurrence of

NPK limitations in one location, which requires a holistic approach for nutrient management

for different geographies niches. The analysis of the spatial pattern of DRIS indices provided

synergy through evaluation of geographical location of nutrient limitations. In this way, nutri-

ent management strategies could be implemented using the spatial distribution maps as a

guide for identifying occurrence of nutrient limitation in specific geographical niches within

agroecosystems. The clustering pattern can be explained by differences in soil characteristic

patterns, which are complex due to the topography of the area [100,101].

The spatial maps (Fig 9) depicted the status of NPK contents in different geographical

niches across the study site most of which displayed their deficiencies, as indicated by negative

DRIS indices (Fig 9). The deficiency could be explained by different historical management

practices (no fertilizers were applied) that have influenced inherent soil properties [4,5,102].

This finding implied that by making reference to the DRIS indices simulated maps, NPK fertil-

ity status could be assessed to guide site-specific fertilizer application. Normally, low nutrient

values require a relatively higher amount of fertilizer application; therefore, these maps may

lead to a better understanding of existing nutrient limitation, allowing sustainable maize pro-

ductivity. This research thus sets a precedent for upscaling the population-based farm survey

approach of nutrient limitations in other smallholder farming systems, with similar condi-

tions. Its implementation would enhance strategies for site-specific fertilizer recommendations

for smallholder agroecosystems.
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5.0 Conclusion

The study developed a population-based farm survey approach for the diagnosis of limiting

nutrients for smallholder agroecosystems in western Kenya. Soil test values for N (0.01%),

Extr. P 12.2 mg kg-1 and K (4.5 cmolc kg-1) were developed from quantitative soil and plant

relationships and then used to define cases of nutrient deficiencies. Deficiency of nitrogen,

phosphorus and potassium limit maize production in the study area. Spatial maps for nutrient

limitations were developed, which identified the occurrence of nutrient limitations in specific

geographies for the study area. This study demonstrated that site-specific diagnosis of nutri-

ents can be implemented in this region and other regions with similar characteristics. This

may lead to effectiveness and optimize fertilizer use recommendations in the region. Therefore

population-based farm survey approach is an effective diagnostic approach for exploring spa-

tial variability of soil nutrients and can be upscaled for future use in similar smallholder agroe-

cosystems. Future research efforts need to evaluate the optimum number of observations in a

target population with respect to the total area to be covered by the farm survey.
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